
Automatic Java TM

Software and
Component Testing:

Using Jtest ® to Automate Unit Testing
and Coding Standard Enforcement

akes

 Java

 lets
nd
 to a

stan-
bility;

Abstract
For some time now, the development community has been praising such practices as unit testing, coding
standard enforcement, metrics measurement, and Design by Contract. When implemented, these
techniques can dramatically improve product reliability as well as reduce development time and cost.
However, until now, these practices have required so much work that few developers could actually adopt
them. Jtest removes this obstacle for Java developers by automating these beneficial techniques. When
performing unit testing, Jtest automatically creates and executes test cases that verify class functionality
and test class construction; when statically analyzing code, Jtest enforces coding standards that prevent
errors and measure metrics that help you flag complicated (and thus error-prone) areas of code. By
automating these practices, Jtest makes it easy for even the most time-pressed developers to incorporate
them into their development processes and reap the rewards that they offer.

1. Introduction

The key to developing reliable JavaTM software on time and on budget is twofold:

• Reduce the opportunity for errors by following Java coding standards.

• Thoroughly test each class as soon as it is developed to prevent small mist
from growing into widespread, difficult-to-pinpoint problems.

Jtest®, a unique Java unit testing tool from ParaSoft, completely automates both of these
tasks so you can perform them as frequently and as thoroughly as needed. Jtest automat-
ically tests any Java class or component without requiring you to write a single test case,
harness, or stub. With the click of a button, Jtest automatically tests code construction
(white-box testing), tests code functionality (black-box testing), and maintains code
integrity (regression testing). No difficult set-up is required; Jtest pinpoints problems
immediately. Moreover, if you use Design by ContractTM (DbC) to add specification
information to your code, Jtest automatically creates and executes test cases that verify
whether a class functions according to its specification. For information on how Jtest
leverages DbC information, see our paper “Using Design by Contract to Automate
Software and Component Testing.”

Jtest also helps you prevent errors with a customizable static analysis feature that
you automatically enforce over 240 industry-respected coding standards, create a
enforce any number of custom coding standards, and tailor the standards enforced
particular project or group.

This paper explains how development techniques such as unit testing and coding
dard enforcement can help you prevent software errors and increase software relia
in doing so, it describes how Jtest can automate these techniques so that they can
become a realistic part of even the most rapid development process.
1

he
ng a

the

s that
ng

ltiple
s are
show

ects
ing
 hav-
 one
2. Unit Testing
2.1 What is Unit Testing?

Often, developers hear about unit testing and think the term refers to module testing. In
other words, developers think they are performing unit testing when they take a module,
or a sub-program that is part of a larger application, and test it. Module testing is impor-
tant and should certainly be performed, but it is not the technique that we want to con-
centrate on here. When we use the term “unit testing,” we are talking about testing t
smallest possible unit of an application; in terms of Java, unit testing involves testi
class as soon as it is compiled.

2.2 Benefits

Unit testing dramatically improves software quality by helping you detect errors at
stage where it is easiest and most cost-effective to find and fix errors. First of all,
because unit testing brings you much closer to the errors, it helps you detect error
application-level testing might not find. Figures 1 and 2 demonstrate how unit testi
does this.

Figure 1 shows a model of testing an application containing many instances of mu
objects. The application is represented by the large oval, and the objects it contain
represented by the smaller ovals. External arrows indicate inputs. Starred regions
potential errors.

To find errors in this model, you need to modify inputs so interactions between obj
will force objects to hit the potential errors. This is incredibly difficult. Imagine stand
at a pool table with a set of billiard balls in a triangle at the middle of the table, and
ing to use a cue ball to move the triangle’s center ball into a particular pocket— with

Figure 1: Application Testing
2

ult: a

g.
d

two

nced
stroke. This is how difficult it can be to design an input that finds an error within an
application. As a result, if you rely only on application testing, you might never reach
many of the classes, let alone uncover the errors that they contain.

As Figure 2 illustrates, testing at the unit level offers a more effective way to find errors.
When you test one object apart from all other objects, it is much easier to reach potential
errors because you are much closer to those errors. The difficulty of reaching the poten-
tial errors when the class is tested as an isolated unit is comparable to the difficulty of
hitting one billiard ball into a particular pocket with a single stroke.

The second way that unit testing facilitates error detection is by preventing bugs from
spawning more bugs, which relieves you from having to wade through problem after
problem to remedy what began as a single, simple error. Because bugs build upon and
interact with one another, if you leave a bug in your code, chances are it will lead to
additional bugs. If you delay testing until the later stages of development, you will prob-
ably have to fix more bugs, spend more time finding and fixing each bug, and change
more code in order to remove each bug. If you test as you go, it will be easier to find and
fix each bug and you’ll minimize the chances of bugs spawning more bugs. The res
significant reduction in debugging time and cost.

2.3 Performing Unit Testing

If performed manually, unit testing tends to be difficult, tedious, and time-consumin
By automating the processes involved, Jtest significantly speeds up unit testing an
makes it more thorough and precise.

The first step in performing unit testing is making the class testable. This requires
main actions:

• Designing scaffolding that will run the class.

• Designing stubs that return values for any external resources that are refere
by the class under test, but that are not currently available or accessible.

Figure 2: Unit Testing
3

 and

ach

e

ffort,
rely
cal by
ch
s each
atically
es
Creating scaffolding involves creating a new class that can only be used to test the origi-
nal class. Scaffolding should include the following features:

• A standard way to specify setup and cleanup.

• A method for selecting individual tests or all available tests.

• A means of analyzing output for expected (or unexpected) results.

• A standard form of failure reporting.

If your class references any external resources (such as external files, databases,
CORBA® objects) that are not yet available or accessible, you must then create stubs that
return values similar to those that the actual external resource could return. When creat-
ing these stubs, you need to choose stub return values that will test the class’s functional-
ity and provide thorough coverage of the class.

Several modifications or rewrites might be required to design scaffolding that tests the
class thoroughly and accurately. Once the scaffolding is created, you must examine it
carefully to ensure that it does not contain any errors. An error in the scaffolding can
sabotage the test, but because you cannot test a class in isolation (the original problem),
you cannot test the scaffolding either.

After the class is testable, you need to design and execute the necessary test cases.
Ideally, you will test the class’s construction (i.e., perform white-box testing), test its
functionality (i.e., perform black-box testing), then perform regression testing with e
modification to ensure that changes did not affect the class’s integrity. (These thre
techniques are described in detail in the sections that follow).

As you can probably see by now, unit testing can consume a fair amount of time, e
and resources if performed without an automatic unit testing tool; that’s why it is ra
performed as often or as thoroughly as it should be. Jtest makes unit testing practi
automating all of the steps involved— even black-box testing. Simply tell Jtest whi
class or project (a set of classes) you want to test, then Jtest automatically examine
class, generates an appropriate test harness and any necessary stubs, then autom
tests the class using the construction, functionality, and regression testing techniqu
described below; it also performs static analysis on all available .java files (this fea-
ture is described in “Coding Standard Enforcement” on page 11).
4

e
an
e the
’ abil-

 criti-
ro-
ast,
 the

ons
ing
illegal
ram
with
d, but
d/or

qual-
t to
ing
essary
ent
 the
o little
aths
-box
 a typi-
ally
ossi-

s. Jtest
 exe-
ether
caught
ce as
2.3.1 White-Box (Construction) Testing

White-box (construction) testing validates that unexpected inputs to a class will not
cause the program to crash. To perform white-box testing, you design and execute test
inputs derived from the class’s internal structure to find out if there are any possibl
class usages that will make the class crash (in Java, this is equivalent to throwing
uncaught runtime exception), as well as if there are coding defects that might mak
code more error-prone. The success of white-box testing hinges on the test inputs
ity to cover the class’s methods as fully as possible and to find inputs that cause
uncaught runtime exceptions.

Preventing and detecting construction problems as early as possible is particularly
cal in Java development. In most languages (for example, C and C++), an illegal p
gram operation usually results in the program terminating suddenly. Java, by contr
provides a very simple way to catch the exceptions that occur at runtime and leave
program running. This mechanism was designed to deal with the checked excepti
(i.e. java.io exceptions) to simplify the handling of calls to the underlying operat
system and other services. Runtime exceptions, on the other hand, arise from an
operation and point to an error in the program. Catching them and letting the prog
run is usually more problematic than the sudden termination scenario that occurs
C++. The program will keep running and appear as though no problem has occurre
it will probably enter an inconsistent state, possibly generating incorrect results an
corrupting the resources that it is accessing.

Although white-box testing is a critical step in ensuring both class and application
ity, the difficulty involved in performing white-box testing manually usually causes i
be either skipped or performed less precisely than it should be. Effectively perform
white-box testing requires that someone determine exactly what test cases are nec
to fully exercise the class under test. This is incredibly difficult to do manually. Rec
studies indicate that a typical company only tests 30 percent of the source code in
programs it develops; the remaining 70 percent is never tested. One reason that s
code is tested is the difficulty of writing test cases that test infrequently executed p
or extreme conditions. Achieving the scope of coverage required for effective white
testing mandates that a significant number of paths are executed. For example, in
cal 10,000 line program, there are approximately 100 million possible paths; manu
generating input that would exercise all of those paths is infeasible and nearly imp
ble.

Jtest uses unique technology to completely automate the white-box testing proces
examines the internal structure of each class under test, automatically designs and
cutes test cases designed to fully test the class’s construction, then determines wh
each test case’s inputs would produce an uncaught runtime exception. For each un
runtime exception that is detected, Jtest reports an error and provides the stack tra
well as the calling sequence that led to the problem.
5

struc-

 the
xpected

ception

 class’s
 exer-
For example, let’s say you have written the following class and want to test its con
tion.

package examples.eval;

public class Simple
{
 public static int map (int index) {
 switch (index) {

case 0:
 case10:
 return -1;
 case 2:

case 20:
 default:
 return -2;
 }
 }

 public static boolean startsWith (String str, String match) {
 for (int i = 0; i < match.length (); ++i)
 if (str.charAt (i) != match.charAt (i))
 return false;
 return true;
 }

 public static int add (int i1, int i2) {
 return i1 + i2;
 }
}

Simply tell Jtest where to find this class, then click the Start button. Jtest examines
class, then creates and executes test cases designed to feed it a wide range of une
inputs. Jtest’s automatically-generated test cases expose the uncaught runtime ex
displayed in Figure 3.

Figure 4 displays some of the test cases that Jtest automatically created to test this
construction. These test cases test the class with a wide variety of inputs and fully
cise the class’s methods.

Figure 3: Uncaught runtime exception exposed by Jtest
6

ns in
ce

s that
 or the
Jtest can perform white-box testing on any Java class or component, including classes
that reference external resources (such as external files, databases, Enterprise
JavaBeansTM [EJB] and CORBA). If you are performing white-box testing on classes
that reference external resources, Jtest will automatically generate the necessary stubs,
or give you the option of calling the actual external method or entering your own stubs.
For classes using CORBA, Jtest provides stubs for the Object Request Broker and other
objects referenced by the class. For classes using EJB, Jtest invokes bean initialization
routines and provides a simulated container context, then performs white-box testing to
make sure that the bean class will always behave correctly.

If you find that certain exceptions reported are not relevant to the project at hand, you
can easily tailor Jtest’s error reports to your needs. If you document valid exceptio
the code using a special @exception comment tag, Jtest will suppress any occurren
of that particular exception. If you use a special @pre comment tag to document the
permissible range for valid method inputs, Jtest will suppress errors found for input
fall outside of that range. You can also suppress exceptions using shortcut menus
suppression panel.

Figure 4: Automatically-created white-box test cases
7

st one
, these
t suite
ener-

m-
esting
 test

cit

ons).

n
ck-box

he

ertions

eth-

hs in

ns,
to the
2.3.2 Black-Box (Functionality) Testing

Black-box (functionality) testing checks that a class behaves according to specification.
While it is critical to ensure that a class is constructed strongly, it is equally important to
ensure that it does what it is supposed to do, and that all parts of the specification have
been fulfilled. To perform black-box testing, you create a set of input/outcome relation-
ships that test whether the class’s specifications are correctly implemented. At lea
test case should be created for each entry in the specification document; preferably
test cases should test the various boundary conditions for each entry. After the tes
is ready, you execute the test cases and verify whether the correct outcomes are g
ated.

If your class contains Design by Contract-format specification information, Jtest co
pletely automates the black-box testing process. If not, Jtest makes the black-box t
process significantly easier and more effective than it would be if you were creating
cases by hand.

Design by Contract (DbC) is a formal way of using comments to incorporate
specification information into the code itself. Basically, the code specification is
expressed unambiguously using a formal language that describes the code’s impli
contracts. These contracts specify such requirements as:

• Conditions that the client must meet before a method is invoked (preconditi

• Conditions that a method must meet after it executes (postconditions).

• Assertions that a method must satisfy at specific points of its execution.

Jtest reads specification information built into the class with the DbC language, the
automatically develops test cases based on this specification. Jtest designs its bla
test cases as follows:

• If the code has postconditions, Jtest creates test cases that verify whether t
code satisfies those conditions.

• If the code has assertions, Jtest creates test cases that try to make the ass
fail.

• If the code has invariant conditions (conditions that apply to all of a class’s m
ods), Jtest creates test cases that try to make the invariant conditions fail.

• If the code has preconditions, Jtest tries to find inputs that force all of the pat
the preconditions.

• If the method under test calls other methods that have specified preconditio
Jtest determines if the method under test can pass non-permissible values
other methods.
8

st
 can
uto-

act.
r your

duced

any

e
If any contract violations are found, they are reported under the Jtest UI’s Design by
Contract Violations branch.

For a more detailed description of how Jtest automatically creates and executes te
cases that verify class functionality, as well as information on how DbC information
help focus Jtest’s white-box testing, see our paper “Using Design by Contract to A
mate Java Software and Component Testing.”

Jtest also helps you create black-box test cases if you do not use Design by Contr
You can use Jtest’s automatically-generated set of test cases as the foundation fo
black-box test suite, then extend it by adding your own test cases.

Test cases can be added in a variety of ways; for example, test cases can be intro
by adding:

• Method inputs directly to a tree node representing each method argument.

• Constants and methods to global or local repositories, then adding them to
method argument.

• JUnit-format Test Classes for test cases that are too complex or difficult to b
added as method inputs.

Figure 5: Functionality problem automatically exposed by Jtest
9

ame
nsure
a-
 in a

vel;
lier
d
t
 is

orrect
If a class references external resources, you can enter your own stubs or have Jtest call
the actual external method.

When the test is run, Jtest uses any available stubs, automatically executes the inputs,
and displays the outcomes for those inputs in a simple tree representation. You can then
view the outcomes and verify them with the click of a button. Jtest automatically notifies
you when specification and regression testing errors occur on subsequent tests of this
class.

2.3.3 Regression Testing

Performing precise regression testing is another necessary step in guaranteeing software
quality and reliability. Regression testing— testing modified code under the exact s
set of inputs and test parameters used in previous test runs— is the only way to e
that modifications did not introduce new errors into the class, or to check if modific
tions successfully eliminated existing errors. Every time a class is modified or used
new environment, regression testing should be used to check the class’s integrity.

Jtest’s regression testing feature lets you perform regression testing at the class le
this means that you can run test suites that monitor your code’s integrity much ear
than was ever before possible. Jtest completely automates all steps involved in an
related to regression testing. Even if you do not specify the correct outcomes, Jtes
remembers the outcomes from previous runs, compares them every time the class
tested, then reports an error for any outcome that changes. If you do specify the c

 Figure 6: Adding method inputs
10

m
n also
 are

een
n-
 for
n and
vent

an
ty:

-

outcomes, Jtest uses those values as a reference when running regression tests. When-
ever Jtest tests a class or set of classes, it automatically saves all test inputs and settings,
then adds the test to Jtest’s menu options. As a result, all you need to do to perfor
regression testing is select the appropriate test, then click the Start button. You ca
integrate batch-mode Jtest into your nightly builds to ensure that regression errors
always found and fixed as soon as possible.

3. Coding Standard Enforcement
3.1 What Are Coding Standards?

Coding standard enforcement is another software development practice that has b
proven to increase application reliability and reduce development time. Coding sta
dards are language-specific “rules” that prevent errors by reducing the opportunity
making errors. Coding standards should be enforced as soon as the code is writte
should be implemented in all languages. If they are used consistently, they can pre
entire classes of errors from entering the code.

The best way to explain what coding standards are and how they work is to show
example. In the code below, a simple spacing error destroys the code’s functionali

public class PT_TLS {
 static int method (int i) {
 switch (i) {
 case 4:
 case3:
 i++;
 break;
 case 25:
 wronglabel:
 break;
 default:
 }
 return i;
 }

 public static void main (String args[]) {
 int i = method (3);
 System.out.println (i);
 }
}

As you can see, the developer intended to write case 3 but instead wrote case3.
Because of this simple typographical error, case3 will now become a text label. Mean
while, when i equals 3, the value will not go to case3. Instead, i = 3 will always go
to the default. This code is not illegal, but it is incorrect.
11

ls in
ve

well as
ing

each
g
viola-
If the developer of this code had followed the coding standard “Don't use text labe
switch statements,” he would have found his mistake and this problem would ha
been avoided.

3.2 Enforcing Coding Standards

During static analysis, Jtest automatically enforces the above coding standard, as
over 240 other industry-respected coding standards; this allows you to enforce cod
standards without consuming valuable code review time. Jtest statically analyzes
class by parsing the .java source and applying a comprehensive set of Java codin
standards to it. After analysis is complete, Jtest alerts you to any coding standard
tions found.

Jtest’s coding standards are divided into the following categories:

• Possible Bugs

• Object-Oriented Programming

• Unused Code

• Initialization

• Naming Conventions

• Javadoc Comments

Figure 7: Coding standard violations found by Jtest
12

ntract
s set
oft-

f cod-
 stan-

ple
nt
d, or
iza-

ant to
e error

Adam

 W.

 stan-
ertain
aphi-
• Portability

• Optimization

• Garbage Collection

• Threads and Synchronization

• Enterprise JavaBeans

• Class Metrics

• Project Metrics

• Miscellaneous

• Internationalization

• Security

• Servlets

In addition, Jtest includes a set of coding standards that help you use Design by Co
(DbC) to add specification information to your code. For more information about thi
of coding standards, see our paper “Using Design by Contract to Automate Java S
ware and Component Testing.”

Each of Jtest’s coding standards is assigned a violation severity level (violations o
ing standards that are most likely to cause an error are level 1; violations of coding
dards that are least likely to cause an error are level 5). By default, Jtest reports
violations of all coding standards with a severity level of 1, 2, or 3. However, it is sim
to tailor Jtest’s static analysis feature to meet the needs of a project or developme
team. With the click of a button, you can enable or disable a single coding standar
all coding standards that belong to a certain level or category. Because this custom
tion capacity relieves you from having to sort through messages that are not relev
your team or project, it conserves your time and resources, as well as expedites th
prevention process.

To learn more about how Java coding standards can help you prevent errors, see
Kolawa’s article, “Coding Standards in Java: Do We Need Them?” in Java Report,
March 2000 as well as John Viaga and Gary McGraw, Tom Mutsdoch, and Edward
Felten’s “Statically Scanning Java Code: Finding Security Vulnerabilities” in IEEE Soft-
ware, September/October 2000.

3.3 Customized Coding Standards

You can also use the RuleWizard feature to create and enforce customized coding
dards that prevent problems that are unique to your coding style, your team, or a c
project. RuleWizard lets you compose and modify coding standards (“rules”) by gr
13

ards.

n-

ava
rts
event-
me,
o to a
 the

of
ber of
tional
cally expressing the pattern that you want Jtest to look for when it parses code during
static analysis. Rules are created by pointing and clicking to add rule building blocks to
a flowchart-like representation, then using dialog boxes to make any necessary modifi-
cations. No knowledge of the parser is required to write or modify a rule. During testing,
Jtest implements these custom coding standards along with “built-in” coding stand

For example, if you found that you repeatedly use assignment in if statement condition
when you should use equality (i.e., you write if (a=b) when you should write if
(a==b)), you could create and enforce the following coding standard: “Avoid assig
ment in if statement condition.”

By providing an easy, flexible way to enforce even the most complex and unique J
coding standards, Jtest helps you perform what many software development expe
believe is the most essential task in ensuring software quality: error prevention. Pr
ing as many errors as possible from entering the code translates not only to less ti
effort, and money spent finding and fixing errors as the project progresses, but als
significantly reduced risk of having errors that elude testing and make their way to
end-user.

3.4 Metrics

A metric is a measurement of a specific attribute or pattern of attributes in a piece
code. For example, a metric might measure the total lines of code in a file, the num
method calls in a class, or the number of return statements in a method. Like tradi

Figure 8: Customized coding standard created with RuleWizard
14

u
.
 prob-
 be

t is a
ry).
coding standards, metrics measurements can help you prevent errors from entering the
code. They do this by indicating which areas of code are most complicated and thus
most error-prone and difficult to debug.

For error-prevention purposes, the most effective metrics are specific and correlated to
particular areas of code. For example, it might be nice to know that your code is gener-
ally complicated, but it is much more useful to know which specific classes and methods
are the most complicated and what is causing them to be complicated. If you use metrics
analysis to target the most complicated code, you can simplify the code before problems
arise.

It is also beneficial to measure more general, project-wide metrics. When metrics are
used consistently and are tracked across multiple team or company projects, they can be
used to make determinations about project length, cost, and status.

Jtest automatically measures both class and project metrics when it performs static anal-
ysis. If any of your metrics are out of the “legal” bounds that we suggest (or that yo
customize), Jtest will report a static analysis violation for each out-of-bound metric
These messages explain the standard violated and report the exact location of the
lem, so you can easily determine what code should be simplified and how it should
changed.

Jtest also offers a summary of all metrics for each class and each project (a projec
set of classes tested at once; for example, all classes in a certain zip file or directo
15

In addition, Jtest helps you track metrics across the span of a project; it saves your
project metrics for each test and can graph how the following metrics change over time:

• Total number of bytes of all class files in the project.

• Total number of classes in the project.

• Total number of Java source files in the project.

• Total number of lines in the project’s classes.

• Total number of packages in the project.

• Total number of package-private classes in the project.

• Total number of private classes in the project.

• Total number of “protected” classes in the project.

• Total number of “public” classes in the project.

Figure 9: Class and Project Metrics
16

actu-
ost

d reap

Com-
4. Conclusion

For some time now, the development community has been praising such practices as
unit testing, coding standard enforcement, metrics measurement, and Design by Con-
tract. When implemented, these techniques:

• Decrease the number of errors in your code.

• Reduce the amount of debugging you need to perform.

• Improve the quality of the software you release.

• Reduce development and maintenance time and cost.

Until now, these practices have required so much work that few developers could
ally adopt them. By automating these practices, Jtest makes it easy for even the m
time-pressed developers to incorporate them into their development processes an
the rewards that they offer.

5. References

Kolawa, A., “Coding Standards in Java: Do We Need Them?” Java Report, March 2000.

ParaSoft Corporation, “Using Design by Contract to Automate Java Software and
ponent Testing.” http://www.parasoft.com/jtest/papers/tech_dbc.htm.

Figure 10: Metrics graph: bytes over time
17

e:

d
rors,
Schroeder, M., “A Practical Guide to Object-Oriented Metrics.” IT Pro, November/
December 1999.

Viaga, J., McGraw, G., Mutsdoch, T. and Felten, E., “Statically Scanning Java Cod
Finding Security Vulnerabilities.” IEEE Software, September/October 2000.

6. Availability

Jtest is available now at www.parasoft.com/jtest. To learn more about how Jtest an
other ParaSoft development tools can help your department prevent and detect er
talk to a Software Quality Specialist today at 1-888-305-0041, or visit
www.parasoft.com.

7. Contacting ParaSoft

USA

2031 S. Myrtle Ave.

Monrovia, CA 91016

Toll Free: (888) 305-0041

Tel: (626)305-0041

Fax: (626) 305-3036

Email: info@parasoft.com

URL: www.parasoft.com

Europe

France: Tel: +33 1 64 89 26 00

UK: Tel: +44 171 288 66 00

Germany: Tel: +49 (0) 78 05 95 69 60

Email: info-europe@parasoft.com

ParaSoft and Jtest are registered trademarks of ParaSoft Corporation. RuleWizard is a trademark of ParaSoft Corporation. All other
brands are trademarks or registered trademarks of their respective holders.

Last Updated 3/27/01
18

	Abstract
	1. Introduction
	2. Unit Testing
	2.1 What is Unit Testing?
	2.2 Benefits
	2.3 Performing Unit Testing

	3. Coding Standard Enforcement
	3.1 What Are Coding Standards?
	3.2 Enforcing Coding Standards
	3.3 Customized Coding Standards
	3.4 Metrics

	4. Conclusion
	5. References
	6. Availability
	7. Contacting ParaSoft

