i

ParaSoft’

Using Design by
Contract ™ to Automate
Java™ Software and
Component Testing

Abstract

Design by Contract (DbC) is a beneficial software development practice that, until now, was too cumbersome to actu-
ally incorporate into most development processes. Jtest and Jcontract make it possible for you to realistically imple-
ment DbC. Jtest helps you add specification information into your code using DbC contracts. This is beneficial

because it ensures that the code and specification are always kept together. From the DbC contracts, Jtest automati-
cally creates test cases that verify class/component functionality. Because this relieves you from having to create
black-box test cases, you save a tremendous amount of time and resources. When the classes/components that contain
DbC contracts are added to the system, Jcontract automatically verifies whether the system uses them correctly. A
misused class/component might appear to perform fine, but might actually spur subtle errors that can trigger system-
wide problems.

1. Introduction

Design by Contraét (DbC) is a formal way of using comments to incorporate specification
information into the code itself. Basically, the code specification is expressed unambiguously
using a formal language that describes the code’s implicit contracts. These contracts specify such
requirements as:

+ Conditions that the client must meet before a method is invoked.
* Conditions that a method must meet after it executes.
» Assertions that a method must satisfy at specific points of its execution.

On its own, DbC can be an effective way to prevent errors throughout the development process. It
can be even more powerful when used with ParaSoft's®?Jest Jcontraét, two Java' develop-

ment tools that understand and take full advantage of the specification information recorded in the
DbC contracts.

Jtest is a Java unit testing tool that tests any Java class or component; it completely automates
black-box testing (functionality testing), white-box testing (construction testing), and regression
testing, as well as static analysis. For more information on Jtest’s general features, see our paper
“Automatic Java Software and Component Testing: Using Jtest to Automate Unit Testing and
Coding Standard Enforcement.” Jtest has been extended to work with the DbC language: when
used with classes or components that contain DbC contracts, Jtest automates black-box testing, a
process that few people ever thought could be automated. Jtest reads the specification information
built into a class, then automatically creates and executes test cases that check the functionality
described in the specification. It also tailors its unit-level white-box test creation to the specifica-
tions contained in the contract.

Jcontract is a new Java development tool that checks DbC contracts at runtime; it can be run inde-
pendently of Jtest, but the two tools are complementary. After you have used Jtest to thoroughly
test your class or component at the unit level, use Jcontract to instrument and compile the DbC-
commented code. Once a class or component is instrumented, Jcontract automatically checks
whether its contracts are violated at runtime. Jcontract is particularly useful for determining
whether an application misuses specific classes or components.

Together, these tools will help you improve the quality and speed of unit-level and system-level
testing. This paper will introduce you to the DbC language, briefly explain how Jtest and Jcon-
tract can leverage DbC information, then describe in detail how using DbC along with these tools
can improve your development process.

1.1 About Design by Contract

DbC originated in Eiffel. Eiffel classes are components that cooperate through the use of the con-
tract, which defines the obligations and benefits for each class. For an excellent introduction to
DbC and a description of how it can be applied to Eiffel, see “Building bug-free O-O software:

An introduction to Design by Contraet at http://www.eiffel.com/doc/manuals/technology/
contract/page.htmi

DbC is not yet commonly a part of programming languages such as C, C++, and Java, but ideally
it should be. After all, any piece of code in any language has implicit contracts attached to it. The
simplest example of an implicit contract is a method to which you are not supposed tapass

If this contract is not met, AlullPointerException will occur. Another example is a
component whose specification states that it only returns positive values. If it occasionally returns
negative values and the consumer of this component is expecting the functionality described in
the specification (only positive values returned), this contract violation could lead to a critical
problem in the application.

Applying DbC to your code has significant benefits even before you start using Jtest and
Jcontract. These benefits include:

* The code’s assumptions are clearly documented (for example, you assuribenthat
should not beaull). Design concepts are placed directly in the code itself.

* The code’s contracts can be checked for consistency because they are explicit.
* The code is much easier to reuse.
* The specification will never be lost.

* When you see the specification while writing the code, you are more likely to implement
the specification correctly.

* When you see the specification while modifying code, you are much less likely to
introduce errors.

Once you start using Jtest and Jcontract, the benefits of using DbC also include:

» Black-box test cases are created automatically. If you currently create your black-box test
cases manually, this means fewer resources spent creating test cases and more resources
you can dedicate to more complex tasks, such as design and coding. If you do not
currently perform black-box testing, this will translate to more reliable software/
components.

* Black-box test cases are automatically updated as the code’s specification changes.

» Class/component misuse is automatically detected.

* The class implementation can assume that input arguments satisfy the preconditions, so
the implementation can be simpler and more efficient.

» The class client is guaranteed that the results will satisfy the postconditions.

How difficult is it to use the DbC language in Java development? Not very. There have been
several efforts to make DbC available in Java. Most of the efforts involve dsivadoc
comments to specify the contract’s conditions. A simple example is:

public class ShoppingCart
{

/**

* @pre item != null
* @post $result > 0
*/

public float add (Item item) {
_items.addElement (item);
_totalCost += item.getPrice ();
return _totalCost;

}

private float _totalCost = O;
private Vector _items = new Vector ();

}

The contract contains the following conditions:

1. Aprecondition @pre item != null) which specifies that the item to be added to the
shopping cart shouldn't beull

2. A postcondition @post $result > 0) which specifies that the value returned by the
method is always greater th@n

Preconditions and postconditions can be thought of as sophisticated assertions. Preconditions are
conditions that the method’s client needs to satisfy before the method can execute; a violation of a
precondition indicates a problem with the client (the client is misusing the method). Postcondi-
tions are conditions that the implementor of the class guarantees will always be satisfied after a
method completes; a postcondition violation indicates a problem within the method.

Other contract elements that Jtest and Jcontract understand and use include:

Element Purpose

@invariant Conditions (similar to postconditions) that apply to all of the meth-
ods in the class. An invariant violation indicates a problem with
the class’s implementation.

@assert Boolean expressions about the state of the software. Each
@assert expression is executed at the point in the program
where the@assert tag is located. An assertion violation indi-
cates a problem within the method.

@exception Tags used to indicate that the code is expected to throw a certain
exception.

@concurrency Tags used to specify the concurrency mode in which the methpd
can be called.

@verbose Tags that allow you to add verbose statements to the code.

For more information about DbC see:

» Geoff Eldridge, “Java and ‘Design by Contract™ (http://www.elj.com/eiffel/feature/dbc/
java/ge/)

* Adam Kolawa, “Automating the Development ProceSsftware Developmentuly 2000
(http://www.sdmagazine.com)

1.2 About Jtest

Jtest is a Java unit testing and static analysis tool; its general purpose is to help you ensure that
any class or component is solid and correct before it is integrated into an application. Jtest’s DbC-
related functionality (just one part of Jtest’s total functionality) helps you create a DbC contract,
then automatically verifies if the class or component under test is built according to the specifica-
tion incorporated into the contract. In other words, it completely automates the black-box (func-
tionality) testing process. This DbC-specific functionality is described below.

As you create code, you incorporate specification information into it using the DbC language.
Next, you compile your class as normal, then tell Jtest to test it. With the click of a button, Jtest
performs the following DbC-related tasks in addition to its normal white-box (construction) test-
ing, black-box testing, regression testing, and static analysis tasks:

1. Instruments the code’s specification information and recompiles the class with extra
bytecodes that describe how the class is supposed to work and be used.

2. Checks if the class is missing any necessary DbC comment tags.

3. Examines the specification information contained in the contract, then creates and exe-
cutes test cases that test whether the class functions as specified.

4. Suppresses any problems found for inputs that violate the preconditions of the class under

test.
5. Suppresses any exception that is documented in the contract.

6. Reports problems found in its UI.
For a more detailed description of this functionality, see “Unit Testing” on page 7.
Once all of the problems that Jtest uncovered (functionality problems, construction problems, and

static analysis violations) are repaired, the class is ready to be integrated into the system. At that
point, Jcontract can be used to monitor whether the class’s contracts are met at runtime.

Elass Testing UI M=l E3
File Test View Preferences Tools MWindow Help

o T —Iy,~ Ehg & T §
By O -0 ‘D b
Mew Project Start Stop Report Miew Metrics Class lobal Rules Source Help

Mame I amples.dynamic.dbe. Post Browse |

——

[=1-%21 [2] Static Analysis Violations: done
B# [1] Method should have equal number of ‘@param’ Javadoc tags as parameters. (JAVADOC PARAM-3)
B# [1] ANl "public® methods should have ‘@pre’ contract. (OBC.PUBMPRE-3)
[—ZI---»@ [1] Design by Contract Violations: done
[0] @pre violations
. [1] @post violations
: v.}(: add: [fresult==2a + h]
at examples.dynamic.dhc.Post.addfdbefpost [Postjava, line 18]
at examples.dynamic.dbec.Postadd (7, 7) [Postjava, line 24]
Test Casze Input
| int RETVAL = examples.dynamic.dbc.Post.add (7, 75;
[0] @invariant violations
[0] i@assert violations
[0] @concurrency violations
------ 1 [0] Uncaught Runtime Exceptions: done
------ {#1[0] Specification and Regression Errors: done

| CAProgram Files\ParaSofutest 4. 0-betadwicynthiattinew.ctp |

Figure 1: Jtest Ul

1.3 About Jcontract

Jcontract is used to check a class or component’s contracts at runtime, after you have used Jtest to
verify that the class or component is solid and correct. It is complementary to Jtest, but the respec-
tive tools can be used independently of one another.

When you have thoroughly tested a class or component and are ready to integrate it into the sys-
tem, recompile it with Jcontract by simply calling Jcontradtx_javac compiler instead of
javac . For example, to instrument and compiigample.java , you would enter the follow-

ing command:

dbc_javac Example.java

Jcontract then instruments the code’s specification information and recompiles the class with
extra bytecodes that describe how the class is supposed to work and be used.

Next, integrate the instrumented class into the system, and run the system. Jcontract watches the
system as it runs, and like an X-ray machine, automatically detects contract violations. For exam-
ple, if a component’s DbC specification said that a particular method required positive integer
inputs, Jcontract would report a violation if the system passed that method any negative inputs.

By default, contract violations found are reported in the Jcontract monitor. This monitor displays
the nature of each violation as well as stack trace information.

Ej' Jcontract Monitor !El E
File Edit Help
L =
> [E
Reset Log

~# Runtime Progress
<& [4] ContractViolations

Runtime Progress

Instrumented classes loaded: 1

------- # @pre checks: 0

------- # i@postchecks: 0

------- - @invariant checks: 0

i@eoncurrency checks: 0

@assertchecks: 4

1[4] Contract Violations

- AssertException: [arg = 0], in thread "main”
at Asserttest) [Assertjava, line 10]

at Assertmain § [Assertjava, line 21]
AssenException: [(arg = 3)], in thread "main"
at Asserttest § [Assertjava, line 11]

at Assertmain § [Assertjava, line 21]

1 AssertException: atleast hundred, is -1, inthread "main”
at Asserttest) [Assertjava, line 12]

at Assertmain § [Assertjava, line 21]
erntException: -1, in thread "main"

at Asserttest § [Assertjava, line 13]

at Assertmain § [Assertjava, line 21]

00:00:01 | Program exited

Figure 2: Jcontract Monitor

Jcontract’s degree of program interference is completely customizable. By default, Jcontract uses
a non-intrusive runtime handler that reports violations found, but does not alter program execu-
tion. You can also choose a runtime handler that throws an exception when a violation occurs,
choose a runtime handler that logs violations in a file, or create a customized runtime handler that
is specially tailored to your needs.

Jcontract also adapts to your needs by letting you select which contract conditions you want it to
instrument. This way, you can optimize program performance by having Jcontract focus on the
conditions that are most important at your current stage of the development process. For example,
after a well-tested class is integrated into an application, you might only want to instrument and
check preconditions that verify whether the application uses the class correctly.

For a more detailed description of Jcontract’s functionality, see “System-Level Testing” on
page 12.

2. Improving the Quality and Speed of Testing

At this point, we have given you a brief overview of the DbC language and how Jtest and Jcon-
tract leverage the information provided in DbC-format contracts. The remainder of this paper is
dedicated to describing in detail how Jtest and Jcontract use DbC information to make the entire
testing phase faster and more efficient.

2.1 Unit Testing

Often, developers hear about unit testing and think the term refers to module testing. In other
words, developers think they are performing unit testing when they take a module, or a sub-pro-
gram that is part of a larger application, and test it. Module testing is important and should cer-
tainly be performed, but it is not the technique that we want to concentrate on here. When we use
the term “unit testing,” we are talking about testing the smallest possible unit of an application; in
terms of Java, unit testing involves testing a class as soon as it is compiled.

Jtest automates all steps of the otherwise time-consuming unit testing process: it automatically
creates a harness and any necessary stubs for the class under test, then performs white-box testing,
black-box testing, regression testing, and static analysis. This section focuses on how Jtest uses
DbC contracts in the unit testing process.

2.1.1 Adding Comments

Before your tools can use DbC information, someone needs to add the contract to the code. That's
why Jtest uses static analysis to guide you through the process of adding DbC comments. When
you let Jtest statically analyze tljava file you are working on, Jtest applies a special set of
coding standards that determine if any critical DbC comments are missing; when Jtest finds a
missing comment, it reports what type of comment is missing and where each comment should be
added.

The coding standards that Jtest applies include:

» All “protected” classes should have @invariant contract.

» All “protected” methods should have &post contract.

» All “protected” methods should have @pre contract.

» All “public” classes should have a@invariant contract.

* All “public” methods should have a@post contract.

» All “public” methods should have a@pre contract.

» All package-private classes should have@imvariant contract.
» All package-private methods should have@post Javadoc tag.

* All package-private methods should have@pre Javadoc tag.
* All “private” classes should have a@invariant contract.

* All “private” methods should have a@post contract.

* All “private” methods should have a@pre contract.

For example, when Jtest finds a public method withou@grost condition, it reports a static

analysis violation message that tells you that@post condition should be added, and at what
line it should be added. Such a violation is shown below in Figure 3.

Pruje(t Testing UL !IEI n

File Test View Preferences Tools Window Help

e g R X e

Hew Clazs Starnt Stop Fause Report Results Del All Metrics

XX AE

20
Projest Global Rules | Histony Help

Search In |C \Pragram Files\ParaSofttest 4.0-heta Fexamplestidynamicidbe Browse |
Filter-in |
Classes Tested |9 Errors Found [6

Mumber of Errars found

=13 [6] All Classes with Errors

--& [6] Static Analysis Violations

+-- [0] Design by Contract Violations

{3 [0] Uncaught Runtime Exceptions

L. [0] Specification and Regression Errors

Results for"All Classes": 9 classes

=14 [6] examples a
1+ [6] cymamic
E-4Z1[6] dbe
[#-@ [0] Assert
[+ [2] Exception
[=I-+ [2] FixSizeStack
- Test Progress
[=I-%21 [2] Errors Found
51421 [2] Static Analysis Violations
E-'w [2] All"public® methods should have ‘@pre’ contract. (DBC PUBMPRE-3)
: [=1-+3 "pullic” method without ‘@are’ contract: FisizeStack'
o] at FgizeStack java, line 22)
=1+ "pullic” method without ‘@ere’ contract: iSEmpty’
L] gt [FixSizeStack java, line 64)]
+--{21 [0] Design by Contract Violations
-1 [0] Uncaught Runtime Exceptions
“--{ [0] Specification and Regression Errors
-+ [1] Post
E=1-+g@ [1] Pre
£ Test Progress
[=-#Z3 [1] Errors Found
(5421 [1] Static Analysis Violations
Bl 1] AllMpublict methods should have ‘@post contract. (DBC PUBMPOST-3)
: [+ "public method without @post contract: ‘gethanthName §'

] S| at[Pre java, line 247 | |
{21[0] Design by Contract Violat__YIEW Source

‘[[0] Uncaught Runtime Excep

*--{Z7[0] Specification and Regression Errors

£ IN_Pracallad -
‘ CAProgram Files\ParaSofttest 4.0-heta3wicynthiaifite st ptp | Showing Results From Last Run {started an 363,

Figure 3: Jtest helps you add DbC contracts

By automatically checking contracts as part of static analysis, Jtest makes it easier to implement
DbC as a team-wide or company-wide coding standard.

2.1.2 Automating Unit-Level Black-Box (Functionality) Testing

As we said earlier, Jtest uses the DbC specification information to automatically create and exe-
cute test cases that verify whether a class or component functions as its DbC specification says it
should function. When you test a class or component with Jtest, Jtest automatically creates and
executes black-box test cases as part of its normal battery of tests. Jtest designs its black-box test
cases as follows:

» Ifthe code has postconditions, Jtest creates test cases that verify whether the code satisfies
those conditions.

» Ifthe code has assert conditions, Jtest creates test cases that try to make the assertions fail.

» If the code has invariant conditions, Jtest creates test cases that try to make the invariant
conditions fail.

» If the code has preconditions, Jtest tries to find inputs that force all of the paths in the
preconditions.

» If the method under test calls other methods that have specified preconditions, Jtest
determines if the method under test can pass non-permissible values to the other methods.

For example, the following code contains a postcondition that describes part of the method’s spec-
ification:

package examples.dynamic.dbc;

class Post

{ [** @post $result = =a+b?*

public static int add (int a, int b)
{

}

return a - b; //BUG: note it should be '+ not '-

}

According to the specification, the method should retatb. However, it actually returna-b .

When we test this class, Jtest instruments the comments, compiles the class, analyzes the specifi-
cation information, then creates and executes test cases that check whether its functionality is
implemented correctly

Elass Testing UL M=l B3

File Test view Preferences Tools ‘Window Help
- - R o -
=l o B & ® 5| =
Class Glubal Rules Source Help

Hew Froject Stat Stop Report View Mstics

Test Progress

Errors Found
=1+ [2] Static Analysis Violations: done

F | d ---»[;" [1] Method should have egual number of ‘@param’ Javadoc tags as parameters. (AVADOC PARAM-3)
aie -+ [1] All"public’ methods should have '@pre' contract, (DBC PUBMPRE-3)

pOStcondition \] b&[1] Design by Contract Violations: done
~E folati

[1] @post violations
v add: [fresult==a+h]
| at examples dynamic dbe Post add$dbcpost [Post java, line 19]
| gt examples dynarmnic.dbe. Postadd (7, Ty [Postjava, line 24]
bbb Test Case Input
teee] int RETWAL = examples.dynamic.dbe. Postadd (7, 73;

[0] @invariant violations
[[0] @assert violations

- [0] @concurrency violations

----- 23 [0] Uncaught Runtime Exceptions: done
----- £ [0] Specification and Regression Errors: done

| C:Program FilesiParaSoftutest 4.0-betasdwncynthiaitinew. ctp ‘

Figure 4: Jtest automatically finds a functionality problem

Test Cases for "examples.dynamic.dbc.Post™ [_ (O] x|

] Automatic Test Cases
& [0] Post

Test Case 1
[Test Case Input

Test case that &
: int RETWAL = examples.dynamic.dbc.Postadd {0, 03;
exposes E|--- <}<}<1 [2] Qutcomes

failed \ - @ Exception: <MO-Exception=
postcondition _ % RETVAL=10

Test Case 2
[Test Case Input
: o] int RETWAL = examples.dynamic.dbe. Postadd (7, 73;
El-+4dd [1] Outcomes
B- >Q @postviolation: [fresult==a + h]
~| gt examples.dynamic.dbe.Post add$dbefpost [Postjava, line 19]
L] gt examples.dynamic.dbe.Postadd (7, 7) [Postjava, line 24]
] User Defined Test Cases

Figure 5: Jtest automatically designs test cases that verify functionality

The test results reveal that the functionality is not implemented correctly. Jtest’'s Test Cases win-
dow displays selected test cases that were created automatically (only the test cases that do some-
thing new [e.g., increase coverage, throw a new exception, etc.] are shown). Test Case 1 shows
that the method functions as specified when the valuisfassigned to bota andb. However,

Test Case 2 uncovers values goandb that violate the method’s postcondition contract. When

the value of7 is assigned to bota andb, the method’s functionality flaw (it subtradisfrom a

10

rather than add the two values) is exposed. If the method was working correctly, Jtest would not
be able to find a test case that violated the postcondition.

For a second example, let’s look at a class that has a simple assertion.

package examples.dynamic.dbc;

public class Assert

{

public static int calculate (int sizel, int size2)
{

int tmp = sizel * size2 - 10;

/** @assert tm p > 0 */

return tmp * 2;

When Jtest tests this class, it tries to create test cases that make the assertion fail.

Elass Testing UI M=l E3

File Test View Preferences Tools Window Help
— T I~ E £ &
B O = D
Class Global Rules

New Projact Stat St Report Misw Matrics

=
Source Halp

=]
Class Mame Iexamp\es.dynamic.dbc.Assen Hrowse |
ra

—— C |

Eb& [2] Static Analysis Violations: done
#-+[# [1] Constant local variables should be declared as “final". (MISC.FLY-3)
B [1] Use shift operator on ‘a* b' expressions. (OPT.SMUL-3)
Fa"ed 1 Design hyc_omr_al:t Violations: done
] [0] @pre violations
] [0] @post violations

assertion
\] [0] @invariant violations
\ . =-E [1] @assert violations

S caleulate: firp = 0]
| gt examples.dynamic.dbe Assert calculate (0, 10) |Assertjava, line 18]
= bbb Test Case Input
] int RETYAL = examples.dynamic.dbe Assert.calculate (0, 103
@' [0] @concurrency violations
] Uncaught Runtime Exceptions: done
] Specification and Regression Errors: done

| CAProgram Files\ParaSoftutest 4.0-betawicynthiattinew. ctp |

Figure 6: Jtest automatically finds a failed assertion

11

Test Cases for "examples.dynamic.dbc.Assert™
@ 71131 Automatic Test Cases
@ [0] Assert

Test case that @ v [3] calculate

. @] Test Case 1
exposes failed —_ @ bbb Test Case Input
assertion ™ | int RETWAL = examples.dynamic.dbc.Assert.calculate (0, 10%;
@ 444 [1] Outcomes
Q Q @assert violation: [tmp = 0]
| at examples. dynamic.dbc Assertcalculate (0, 10) [Assertjava, line 16]
@] Test Case 2
Q@ M Test Case Input
| int RETWAL = examples.dynamic.dbc Assert calculate (1, 145
@ 444 [2] Outcomes
Exception: =MO-Exception=
RETWAL=2
@] Test Case 3
@ M Test Case Input
| int RETWAL = examples.dynamic.dbc Assert calculate (7, 73
Q@ 4 [2] Outcomes
Exception: =MO-Exception=
RETWAL=78
@ [][0] User Defined Test Cases

B

Figure 7: Jtest automatically creates test cases that make the assertion fail

Once again, Jtest automatically creates test cases that test the specified functionality and expose
functionality problems. After the code is repaired, these same test cases can be replayed to deter-
mine whether or not the modifications actually repaired the problem.

2.1.3 Optimizing Unit-Level White-Box (Construction) Testing

DbC can also help you optimize your unit-level white-box (construction) testing with Jtest. You
can use DbC comments to filter out error messages that are not relevant to the class under test.

If you document expected exceptions in the code usin@@k&ception tag, Jtest will suppress
any occurrence of that particular exception.

If you document the permissible range for valid method inputs usin@thee tag, Jtest will sup-
press any errors found for inputs that do not satisfy those preconditions. In addition, after you
integrate the instrumented class or component into the application, Jcontract will watch the sys-
tem execute and alert you if the system passes the class/component any inputs@aetheys
describe as being “not permissible” (for more information on this functionality, see “System-
Level Testing” below).

2.2 System-Level Testing
System-level testing can uncover different types of errors than unit testing: it can expose instances

where the system misuses a class or component as well as instances where complex system inter-
actions cause problems that were not apparent at the unit-level.

12

After you are confident that your class or component works correctly, recompile it with Jcon-
tract'sdbc_javac compiler, then integrate it into the system where it will be used. Next, run the
system using your normal test suite. For example, if the instrumented component is part of a Web
application, you would want to test all facets of the application— including its interactions with
databases and other business logic components— to ensure that a wide range of possible interac-
tions and uses are tested. At runtime, Jcontract checks two main things:

* Does the rest of the system use the instrumented class correctly? (Do other parts of the
system pass the instrumented class inputs that violate the requirements specified in the
preconditions?)

* Do the instrumented class’s interactions with the rest of the system lead to functionality
problems that could not be exposed at the unit level? (Does a certain chain of reactions
cause an assertion to fail, or a method to return a value that violates its postcondition?)

El' Jcontract Monitor !E[E
File Edit Help

<;; @

Resat Log

-4 Runtime Progress
-4 [1] ContractViolations

-£4 Runtime Progress
-# Instrumented classes loaded: 1
% @pre checks: 1
% @postchecks: 0
& @invariant checks: 0
& @eoncurrency checks: 0
% (@assertchecks: 0
-1 [1] Contract Violations
=23 PreException: [month == 1 && month == 12, in thread "main”
at Example.settonthfdbckpre § [Example java, line 3]
at Example.sethonth § [Example.java, line 4]
at Example.main § [Example.java, line 13]

0:0o:o0 | Frogram exited

Figure 8: Jcontract checks contracts at runtime

If performance speed is an issue, you can easily configure Jcontract so that it only instruments the
contract types that you are most concerned with. This makes it easy for you to get the precise
checking that you need without sacrificing performance. For example, say that you have thor-
oughly tested a performance-critical class at the unit level and are fairly certain that it functions
correctly. You want to determine if it is used correctly within the system, but you do not want the
performance hit that might arise from checking all of the class’s postcondition and assertion con-
tracts. Your best solution would be to have Jcontract instrument only the preconditions when it
recompiled the class; this way, you would gain the precondition checking without a significant
impact on that critical class’s performance.

13

El' Jcontract Preferences !E[B

Instrurnentation | Muniturl Editor'

[Instrument @pre Conditions

[Instrument @post Conditions

[Instrument @invariant Conditions

[Instrument @concurrency Conditions
Default Concurrency: IW
[Instrument @throws Caonditions

[Instrument @assert Conditions

[Instrument @wverbose Staternents

Instrumentation Log File

[v write Log File

Log File: |dbc_ia\rac.lc|g

Temporary Directory
Directary path: ;Temp

Runtime Handler
|jc0ntract.MonitorRuntimeHandler j

Ok | Cancel | Resetto Defaults |

Figure 9: Jcontract preferences are easily customizable

3. Conclusion

Design by Contract is a beneficial software development practice, but until now, the time required
to implement it prevented the majority of developers from incorporating it into their development
process. Jtest and Jcontract make it possible to realistically implement DbC and reap the benefits
that DbC has to offer. When you use DbC along with Jtest and Jcontract:

» Jtest’s static analysis feature helps you incorporate specification information into the code.
When formalized specification information is included in the code, you (and other
developers) will be able to easily locate the specification and understand what the code is
supposed to do.

» Jtest automatically creates and executes test cases that check class/component
functionality. Because this relieves you from having to create black-box test cases, this
saves you a tremendous amount of time and resources.

« Jtest and Jcontract automatically alert you when methods are misused. A misused method
might appear to perform fine, but might actually spur subtle errors that can trigger
problems throughout the application it is used in.

« Jtest and Jcontract facilitate component exchange and software reuse. Jtest helps the
component’s producer incorporate specification information into the component and
verify that the component performs according to specification. Jtest helps the component’s
consumer immediately test if the component works as the producer claims it does, then

14

Jcontract helps him determine if his system is using the component as it is designed to be
used.

With these tools, a small upfront investment in writing specifications (which should be written
anyway) allows you to produce more reliable and reusable software in less time than ever before.

4. References

Interactive Software Engineering, “Building Bug-Free O-O Software: An Introduction to Design
by Contractt.” http://www.eiffel.com/doc/manuals/technology/contract/page.html

Eldridge, G. “Java and ‘Design by Contract.” http://www.elj.com/eiffel/feature/dbc/java/ge/

Kolawa, A., “Automating the Development ProcesSdftware Developmeniuly 2000.

ParaSoft Corporation, “Automatic Java Software and Component Testing: Using Jtest to Auto-
mate Unit Testing and Coding Standard Enforcement.” http://www.parasoft.com/jtest/papers/
jtestwp_4.htm

5. Availability

To learn more about how Jtest, Jcontract, and other ParaSoft development tools can help your
department prevent and detect errors, talk to a Software Quality Specialist today at 1-888-305-
0041, or visit www.parasoft.com.

6. Contacting ParaSoft

USA

2031 S. Myrtle Ave.
Monrovia, CA 91016

Toll Free: (888) 305-0041
Tel: (626)305-0041

Fax: (626) 305-3036
Email: info@parasoft.com
URL: www.parasoft.com

Europe

France: Tel: +33 1 64 89 26 00

UK: Tel: +44 171 288 66 00
Germany: Tel: +49 (0) 78 05 95 69 60
Email: info-europe @parasoft.com

ParaSoft and Jtest are registered trademarks of ParaSoft Corporation. Jcontract is a trademark of ParaSoft Corporation. All other brands are trade-
marks or registered trademarks of their respective holders.
Last Updated 3/28/01

15

	Abstract
	1. Introduction
	1.1 About Design by Contract
	1. A precondition (@pre item != null) which specifies that the item to be added to the shopping c...
	2. A postcondition (@post $result > 0) which specifies that the value returned by the method is a...

	1.2 About Jtest
	1. Instruments the code’s specification information and recompiles the class with extra bytecodes...
	2. Checks if the class is missing any necessary DbC comment tags.
	3. Examines the specification information contained in the contract, then creates and executes te...
	4. Suppresses any problems found for inputs that violate the preconditions of the class under test.
	5. Suppresses any exception that is documented in the contract.
	6. Reports problems found in its UI.

	1.3 About Jcontract

	2. Improving the Quality and Speed of Testing
	2.1 Unit Testing
	2.2 System-Level Testing

	3. Conclusion
	4. References
	5. Availability
	6. Contacting ParaSoft

