
Using Design by
Contract TM to Automate

Java TM Software and
Component Testing

o actu-
imple-
l
tomati-
ate
at contain
tly. A
ystem-

y
y such

ss. It

in the

tes
ion
paper
d
hen
ting, a

mation
ality

fica-

n inde-
ghly
bC-
ks
Abstract
Design by Contract (DbC) is a beneficial software development practice that, until now, was too cumbersome t
ally incorporate into most development processes. Jtest and Jcontract make it possible for you to realistically
ment DbC. Jtest helps you add specification information into your code using DbC contracts. This is beneficia
because it ensures that the code and specification are always kept together. From the DbC contracts, Jtest au
cally creates test cases that verify class/component functionality. Because this relieves you from having to cre
black-box test cases, you save a tremendous amount of time and resources. When the classes/components th
DbC contracts are added to the system, Jcontract automatically verifies whether the system uses them correc
misused class/component might appear to perform fine, but might actually spur subtle errors that can trigger s
wide problems.

1. Introduction

Design by ContractTM (DbC) is a formal way of using comments to incorporate specification
information into the code itself. Basically, the code specification is expressed unambiguousl
using a formal language that describes the code’s implicit contracts. These contracts specif
requirements as:

• Conditions that the client must meet before a method is invoked.

• Conditions that a method must meet after it executes.

• Assertions that a method must satisfy at specific points of its execution.

On its own, DbC can be an effective way to prevent errors throughout the development proce
can be even more powerful when used with ParaSoft’s Jtest® and JcontractTM, two JavaTM develop-
ment tools that understand and take full advantage of the specification information recorded
DbC contracts.

Jtest is a Java unit testing tool that tests any Java class or component; it completely automa
black-box testing (functionality testing), white-box testing (construction testing), and regress
testing, as well as static analysis. For more information on Jtest’s general features, see our
“Automatic Java Software and Component Testing: Using Jtest to Automate Unit Testing an
Coding Standard Enforcement.” Jtest has been extended to work with the DbC language: w
used with classes or components that contain DbC contracts, Jtest automates black-box tes
process that few people ever thought could be automated. Jtest reads the specification infor
built into a class, then automatically creates and executes test cases that check the function
described in the specification. It also tailors its unit-level white-box test creation to the speci
tions contained in the contract.

Jcontract is a new Java development tool that checks DbC contracts at runtime; it can be ru
pendently of Jtest, but the two tools are complementary. After you have used Jtest to thorou
test your class or component at the unit level, use Jcontract to instrument and compile the D
commented code. Once a class or component is instrumented, Jcontract automatically chec
whether its contracts are violated at runtime. Jcontract is particularly useful for determining
whether an application misuses specific classes or components.
1

vel
n-
tools

con-
to

e:

eally
The

turns
d in
l

ent

test
ources
Together, these tools will help you improve the quality and speed of unit-level and system-le
testing. This paper will introduce you to the DbC language, briefly explain how Jtest and Jco
tract can leverage DbC information, then describe in detail how using DbC along with these
can improve your development process.

1.1 About Design by Contract

DbC originated in Eiffel. Eiffel classes are components that cooperate through the use of the
tract, which defines the obligations and benefits for each class. For an excellent introduction
DbC and a description of how it can be applied to Eiffel, see “Building bug-free O-O softwar
An introduction to Design by ContractTM” at http://www.eiffel.com/doc/manuals/technology/
contract/page.html

DbC is not yet commonly a part of programming languages such as C, C++, and Java, but id
it should be. After all, any piece of code in any language has implicit contracts attached to it.
simplest example of an implicit contract is a method to which you are not supposed to passnull .
If this contract is not met, aNullPointerException will occur. Another example is a
component whose specification states that it only returns positive values. If it occasionally re
negative values and the consumer of this component is expecting the functionality describe
the specification (only positive values returned), this contract violation could lead to a critica
problem in the application.

Applying DbC to your code has significant benefits even before you start using Jtest and
Jcontract. These benefits include:

• The code’s assumptions are clearly documented (for example, you assume thatitem
should not benull). Design concepts are placed directly in the code itself.

• The code’s contracts can be checked for consistency because they are explicit.

• The code is much easier to reuse.

• The specification will never be lost.

• When you see the specification while writing the code, you are more likely to implem
the specification correctly.

• When you see the specification while modifying code, you are much less likely to
introduce errors.

Once you start using Jtest and Jcontract, the benefits of using DbC also include:

• Black-box test cases are created automatically. If you currently create your black-box
cases manually, this means fewer resources spent creating test cases and more res
you can dedicate to more complex tasks, such as design and coding. If you do not
currently perform black-box testing, this will translate to more reliable software/
components.

• Black-box test cases are automatically updated as the code’s specification changes.
2

, so

e

e

ns are
n of a
di-
er a
• Class/component misuse is automatically detected.

• The class implementation can assume that input arguments satisfy the preconditions
the implementation can be simpler and more efficient.

• The class client is guaranteed that the results will satisfy the postconditions.

How difficult is it to use the DbC language in Java development? Not very. There have been
several efforts to make DbC available in Java. Most of the efforts involve usingJavadoc
comments to specify the contract’s conditions. A simple example is:

public class ShoppingCart
{

/**
* @pre item != null
* @post $result > 0
*/

public float add (Item item) {
_items.addElement (item);
_totalCost += item.getPrice ();
return _totalCost;

}
private float _totalCost = 0;
private Vector _items = new Vector ();

}

The contract contains the following conditions:

1. A precondition (@pre item != null) which specifies that the item to be added to th
shopping cart shouldn't benull .

2. A postcondition (@post $result > 0) which specifies that the value returned by th
method is always greater than0.

Preconditions and postconditions can be thought of as sophisticated assertions. Preconditio
conditions that the method’s client needs to satisfy before the method can execute; a violatio
precondition indicates a problem with the client (the client is misusing the method). Postcon
tions are conditions that the implementor of the class guarantees will always be satisfied aft
method completes; a postcondition violation indicates a problem within the method.
3

/

that
DbC-

act,
ifica-
nc-

e.
est
st-

xe-
Other contract elements that Jtest and Jcontract understand and use include:

For more information about DbC see:

• Geoff Eldridge, “Java and ‘Design by Contract’” (http://www.elj.com/eiffel/feature/dbc
java/ge/)

• Adam Kolawa, “Automating the Development Process”Software Development, July 2000
(http://www.sdmagazine.com)

1.2 About Jtest

Jtest is a Java unit testing and static analysis tool; its general purpose is to help you ensure
any class or component is solid and correct before it is integrated into an application. Jtest’s
related functionality (just one part of Jtest’s total functionality) helps you create a DbC contr
then automatically verifies if the class or component under test is built according to the spec
tion incorporated into the contract. In other words, it completely automates the black-box (fu
tionality) testing process. This DbC-specific functionality is described below.

As you create code, you incorporate specification information into it using the DbC languag
Next, you compile your class as normal, then tell Jtest to test it. With the click of a button, Jt
performs the following DbC-related tasks in addition to its normal white-box (construction) te
ing, black-box testing, regression testing, and static analysis tasks:

1. Instruments the code’s specification information and recompiles the class with extra
bytecodes that describe how the class is supposed to work and be used.

2. Checks if the class is missing any necessary DbC comment tags.
3. Examines the specification information contained in the contract, then creates and e

cutes test cases that test whether the class functions as specified.

Element Purpose

@invariant Conditions (similar to postconditions) that apply to all of the meth-
ods in the class. An invariant violation indicates a problem with
the class’s implementation.

@assert Boolean expressions about the state of the software. Each
@assert expression is executed at the point in the program
where the@assert tag is located. An assertion violation indi-
cates a problem within the method.

@exception Tags used to indicate that the code is expected to throw a certain
exception.

@concurrency Tags used to specify the concurrency mode in which the method
can be called.

@verbose Tags that allow you to add verbose statements to the code.
4

under

, and
t that

Jtest to
spec-

sys-
4. Suppresses any problems found for inputs that violate the preconditions of the class
test.

5. Suppresses any exception that is documented in the contract.
6. Reports problems found in its UI.

For a more detailed description of this functionality, see “Unit Testing” on page 7.

Once all of the problems that Jtest uncovered (functionality problems, construction problems
static analysis violations) are repaired, the class is ready to be integrated into the system. A
point, Jcontract can be used to monitor whether the class’s contracts are met at runtime.

1.3 About Jcontract

Jcontract is used to check a class or component’s contracts at runtime, after you have used
verify that the class or component is solid and correct. It is complementary to Jtest, but the re
tive tools can be used independently of one another.

When you have thoroughly tested a class or component and are ready to integrate it into the
tem, recompile it with Jcontract by simply calling Jcontract’sdbc_javac compiler instead of
javac . For example, to instrument and compileExample.java , you would enter the follow-
ing command:

dbc_javac Example.java

Figure 1: Jtest UI
5

h

es the
xam-

er
uts.

lays

t uses
cu-
rs,
r that

t it to
the
mple,

and
Jcontract then instruments the code’s specification information and recompiles the class wit
extra bytecodes that describe how the class is supposed to work and be used.

Next, integrate the instrumented class into the system, and run the system. Jcontract watch
system as it runs, and like an X-ray machine, automatically detects contract violations. For e
ple, if a component’s DbC specification said that a particular method required positive integ
inputs, Jcontract would report a violation if the system passed that method any negative inp

By default, contract violations found are reported in the Jcontract monitor. This monitor disp
the nature of each violation as well as stack trace information.

Jcontract’s degree of program interference is completely customizable. By default, Jcontrac
a non-intrusive runtime handler that reports violations found, but does not alter program exe
tion. You can also choose a runtime handler that throws an exception when a violation occu
choose a runtime handler that logs violations in a file, or create a customized runtime handle
is specially tailored to your needs.

Jcontract also adapts to your needs by letting you select which contract conditions you wan
instrument. This way, you can optimize program performance by having Jcontract focus on
conditions that are most important at your current stage of the development process. For exa
after a well-tested class is integrated into an application, you might only want to instrument
check preconditions that verify whether the application uses the class correctly.

Figure 2: Jcontract Monitor
6

on-
r is
ntire

r
pro-
er-
e use
n; in

ally
testing,
uses

That’s
hen

a
uld be
For a more detailed description of Jcontract’s functionality, see “System-Level Testing” on
page 12.

2. Improving the Quality and Speed of Testing

At this point, we have given you a brief overview of the DbC language and how Jtest and Jc
tract leverage the information provided in DbC-format contracts. The remainder of this pape
dedicated to describing in detail how Jtest and Jcontract use DbC information to make the e
testing phase faster and more efficient.

2.1 Unit Testing

Often, developers hear about unit testing and think the term refers to module testing. In othe
words, developers think they are performing unit testing when they take a module, or a sub-
gram that is part of a larger application, and test it. Module testing is important and should c
tainly be performed, but it is not the technique that we want to concentrate on here. When w
the term “unit testing,” we are talking about testing the smallest possible unit of an applicatio
terms of Java, unit testing involves testing a class as soon as it is compiled.

Jtest automates all steps of the otherwise time-consuming unit testing process: it automatic
creates a harness and any necessary stubs for the class under test, then performs white-box
black-box testing, regression testing, and static analysis. This section focuses on how Jtest
DbC contracts in the unit testing process.

2.1.1 Adding Comments

Before your tools can use DbC information, someone needs to add the contract to the code.
why Jtest uses static analysis to guide you through the process of adding DbC comments. W
you let Jtest statically analyze the.java file you are working on, Jtest applies a special set of
coding standards that determine if any critical DbC comments are missing; when Jtest finds
missing comment, it reports what type of comment is missing and where each comment sho
added.

The coding standards that Jtest applies include:

• All “protected” classes should have an@invariant contract.

• All “protected” methods should have an@post contract.

• All “protected” methods should have an@pre contract.

• All “public” classes should have an@invariant contract.

• All “public” methods should have an@post contract.

• All “public” methods should have an@pre contract.

• All package-private classes should have an@invariant contract.

• All package-private methods should have an@post Javadoc tag.
7

ment
• All package-private methods should have an@pre Javadoc tag.

• All “private” classes should have an@invariant contract.

• All “private” methods should have an@post contract.

• All “private” methods should have an@pre contract.

For example, when Jtest finds a public method without an@post condition, it reports a static
analysis violation message that tells you that an@post condition should be added, and at what
line it should be added. Such a violation is shown below in Figure 3.

By automatically checking contracts as part of static analysis, Jtest makes it easier to imple
DbC as a team-wide or company-wide coding standard.

Figure 3: Jtest helps you add DbC contracts
8

exe-
ays it
and
ox test

atisfies

ons fail.

riant

thods.

spec-

specifi-
is
2.1.2 Automating Unit-Level Black-Box (Functionality) Testing

As we said earlier, Jtest uses the DbC specification information to automatically create and
cute test cases that verify whether a class or component functions as its DbC specification s
should function. When you test a class or component with Jtest, Jtest automatically creates
executes black-box test cases as part of its normal battery of tests. Jtest designs its black-b
cases as follows:

• If the code has postconditions, Jtest creates test cases that verify whether the code s
those conditions.

• If the code has assert conditions, Jtest creates test cases that try to make the asserti

• If the code has invariant conditions, Jtest creates test cases that try to make the inva
conditions fail.

• If the code has preconditions, Jtest tries to find inputs that force all of the paths in the
preconditions.

• If the method under test calls other methods that have specified preconditions, Jtest
determines if the method under test can pass non-permissible values to the other me

For example, the following code contains a postcondition that describes part of the method’s
ification:

package examples.dynamic.dbc;

class Post
{

/** @post $result = = a + b */

public static int add (int a, int b)
{

return a - b; //BUG: note it should be '+' not '-'
}

}

According to the specification, the method should returna+b . However, it actually returnsa-b .

When we test this class, Jtest instruments the comments, compiles the class, analyzes the
cation information, then creates and executes test cases that check whether its functionality
implemented correctly
9

win-
o some-
ows
.

The test results reveal that the functionality is not implemented correctly. Jtest’s Test Cases
dow displays selected test cases that were created automatically (only the test cases that d
thing new [e.g., increase coverage, throw a new exception, etc.] are shown). Test Case 1 sh
that the method functions as specified when the value of0 is assigned to botha andb. However,
Test Case 2 uncovers values fora andb that violate the method’s postcondition contract. When
the value of7 is assigned to botha andb, the method’s functionality flaw (it subtractsb from a

Figure 4: Jtest automatically finds a functionality problem

Failed
postcondition

Figure 5: Jtest automatically designs test cases that verify functionality

Test case that
exposes
failed
postcondition
10

not
rather than add the two values) is exposed. If the method was working correctly, Jtest would
be able to find a test case that violated the postcondition.

For a second example, let’s look at a class that has a simple assertion.

package examples.dynamic.dbc;

public class Assert
{

public static int calculate (int size1, int size2)
{

int tmp = size1 * size2 - 10;

/** @assert tm p > 0 */

return tmp * 2;
}

}

When Jtest tests this class, it tries to create test cases that make the assertion fail.

Figure 6: Jtest automatically finds a failed assertion

Failed
assertion
11

xpose
deter-

ou
test.

u
sys-

ances
m inter-
Once again, Jtest automatically creates test cases that test the specified functionality and e
functionality problems. After the code is repaired, these same test cases can be replayed to
mine whether or not the modifications actually repaired the problem.

2.1.3 Optimizing Unit-Level White-Box (Construction) Testing

DbC can also help you optimize your unit-level white-box (construction) testing with Jtest. Y
can use DbC comments to filter out error messages that are not relevant to the class under

If you document expected exceptions in the code using the@exception tag, Jtest will suppress
any occurrence of that particular exception.

If you document the permissible range for valid method inputs using the@pre tag, Jtest will sup-
press any errors found for inputs that do not satisfy those preconditions. In addition, after yo
integrate the instrumented class or component into the application, Jcontract will watch the
tem execute and alert you if the system passes the class/component any inputs that the@pre tags
describe as being “not permissible” (for more information on this functionality, see “System-
Level Testing” below).

2.2 System-Level Testing

System-level testing can uncover different types of errors than unit testing: it can expose inst
where the system misuses a class or component as well as instances where complex syste
actions cause problems that were not apparent at the unit-level.

Test case that
exposes failed
assertion

Figure 7: Jtest automatically creates test cases that make the assertion fail
12

-
the

Web
ith
nterac-

the
the

ity
ns
?)

ts the
se
r-
ns
the
con-

n it
nt
After you are confident that your class or component works correctly, recompile it with Jcon
tract’sdbc_javac compiler, then integrate it into the system where it will be used. Next, run
system using your normal test suite. For example, if the instrumented component is part of a
application, you would want to test all facets of the application— including its interactions w
databases and other business logic components— to ensure that a wide range of possible i
tions and uses are tested. At runtime, Jcontract checks two main things:

• Does the rest of the system use the instrumented class correctly? (Do other parts of
system pass the instrumented class inputs that violate the requirements specified in
preconditions?)

• Do the instrumented class’s interactions with the rest of the system lead to functional
problems that could not be exposed at the unit level? (Does a certain chain of reactio
cause an assertion to fail, or a method to return a value that violates its postcondition

If performance speed is an issue, you can easily configure Jcontract so that it only instrumen
contract types that you are most concerned with. This makes it easy for you to get the preci
checking that you need without sacrificing performance. For example, say that you have tho
oughly tested a performance-critical class at the unit level and are fairly certain that it functio
correctly. You want to determine if it is used correctly within the system, but you do not want
performance hit that might arise from checking all of the class’s postcondition and assertion
tracts. Your best solution would be to have Jcontract instrument only the preconditions whe
recompiled the class; this way, you would gain the precondition checking without a significa
impact on that critical class’s performance.

Figure 8: Jcontract checks contracts at runtime
13

uired
ent
nefits

ode.

de is

is

ethod

e

ent’s
en
3. Conclusion

Design by Contract is a beneficial software development practice, but until now, the time req
to implement it prevented the majority of developers from incorporating it into their developm
process. Jtest and Jcontract make it possible to realistically implement DbC and reap the be
that DbC has to offer. When you use DbC along with Jtest and Jcontract:

• Jtest’s static analysis feature helps you incorporate specification information into the c
When formalized specification information is included in the code, you (and other
developers) will be able to easily locate the specification and understand what the co
supposed to do.

• Jtest automatically creates and executes test cases that check class/component
functionality. Because this relieves you from having to create black-box test cases, th
saves you a tremendous amount of time and resources.

• Jtest and Jcontract automatically alert you when methods are misused. A misused m
might appear to perform fine, but might actually spur subtle errors that can trigger
problems throughout the application it is used in.

• Jtest and Jcontract facilitate component exchange and software reuse. Jtest helps th
component’s producer incorporate specification information into the component and
verify that the component performs according to specification. Jtest helps the compon
consumer immediately test if the component works as the producer claims it does, th

Figure 9: Jcontract preferences are easily customizable
14

to be

n
efore.

ign

to-
/

our
05-

are trade-
Jcontract helps him determine if his system is using the component as it is designed
used.

With these tools, a small upfront investment in writing specifications (which should be writte
anyway) allows you to produce more reliable and reusable software in less time than ever b

4. References

Interactive Software Engineering, “Building Bug-Free O-O Software: An Introduction to Des
by ContractTM.” http://www.eiffel.com/doc/manuals/technology/contract/page.html

Eldridge, G. “Java and ‘Design by Contract.’” http://www.elj.com/eiffel/feature/dbc/java/ge/

Kolawa, A., “Automating the Development Process.”Software Development,July 2000.

ParaSoft Corporation, “Automatic Java Software and Component Testing: Using Jtest to Au
mate Unit Testing and Coding Standard Enforcement.” http://www.parasoft.com/jtest/papers
jtestwp_4.htm

5. Availability

To learn more about how Jtest, Jcontract, and other ParaSoft development tools can help y
department prevent and detect errors, talk to a Software Quality Specialist today at 1-888-3
0041, or visit www.parasoft.com.

6. Contacting ParaSoft

USA
2031 S. Myrtle Ave.

Monrovia, CA 91016

Toll Free: (888) 305-0041

Tel: (626)305-0041

Fax: (626) 305-3036

Email: info@parasoft.com

URL: www.parasoft.com

Europe
France: Tel: +33 1 64 89 26 00

UK: Tel: +44 171 288 66 00

Germany: Tel: +49 (0) 78 05 95 69 60

Email: info-europe@parasoft.com

ParaSoft and Jtest are registered trademarks of ParaSoft Corporation. Jcontract is a trademark of ParaSoft Corporation. All other brands
marks or registered trademarks of their respective holders.

Last Updated 3/28/01
15

	Abstract
	1. Introduction
	1.1 About Design by Contract
	1. A precondition (@pre item != null) which specifies that the item to be added to the shopping c...
	2. A postcondition (@post $result > 0) which specifies that the value returned by the method is a...

	1.2 About Jtest
	1. Instruments the code’s specification information and recompiles the class with extra bytecodes...
	2. Checks if the class is missing any necessary DbC comment tags.
	3. Examines the specification information contained in the contract, then creates and executes te...
	4. Suppresses any problems found for inputs that violate the preconditions of the class under test.
	5. Suppresses any exception that is documented in the contract.
	6. Reports problems found in its UI.

	1.3 About Jcontract

	2. Improving the Quality and Speed of Testing
	2.1 Unit Testing
	2.2 System-Level Testing

	3. Conclusion
	4. References
	5. Availability
	6. Contacting ParaSoft

