
Insure++:
 An Automatic Runtime

 Error Detection Tool

 the

ust all
+

s.

arlier.
s of
ns,

 error
error

finds
les,
trace.

.
ent

ron is
r in
etects
1. Introduction

Insure++ is an automatic runtime error detection tool for C/C++ applications that
uncovers problems such as memory corruption, memory leaks, pointer errors, and I/O
errors. By using a unique set of patented technologies, Insure++ thoroughly examines
and tests the code from inside and out, then reports errors and pinpoints their exact
location. Insure++ also performs coverage analysis, clearly indicating which sections of
the code were tested, and facilitates memory optimization, displaying how the program
uses memory in real-time. By integrating Insure++ into your development environment,
developers can save weeks of debugging time and prevent costly crashes from affecting
your customers.

Unfortunately, development tools like Insure++ usually aren’t called into action until
end of a software project, when particularly difficult bugs causing erratic behavior
cannot be found. The typical crisis cycle goes something like this: developers exha
options searching for the source of a bug, they give up, they use Insure++, Insure+
finds the bug, the developers fix the bug, and then move on until the next crisis hit

This crisis cycle could be broken, resulting in less aggravation and less time spent
debugging, if Insure++ was incorporated into the software development process e
Insure++ has been used on C/C++ applications with hundreds of thousands of line
code; multi-process applications, programs distributed over hundreds of workstatio
operating systems, and compilers have been validated with Insure++. This paper
describes Insure++’s modes of operation, how to implement Insure++ in the
development process, and the types of errors Insure++ uncovers.

2. How Insure++ Works

Insure has two modes of operation that provide developers with varying degrees of
checking: Chaperon for a quick check and Source Code Instrumentation for deep
checking. This gives developers a large amount of flexibility when it comes to
maximizing their development and debugging time. In both modes, when Insure++
a problem, it provides a complete diagnosis, including the names of related variab
the line of source code containing the error, a description of the error, and a stack

2.1 Chaperon

Insure++’s latest technology--Chaperon--works with existing executable programs
Chaperon does not require any recompiling and relinking, or changing of environm
variables. Though less intensive than Source Code Instrumentation mode, Chape
more expedient. It checks all data memory references made by a process, whethe
compiled code, language support routines, or shared or archived libraries. It also d
1

k, or
cks,

e any
ave
ch

cking

e
 of

ode
 that
 the
any
ed

f
gainst
ntation

e

 copy

t is
and reports reads of uninitialized memory, reads or writes that are not within the bounds
of allocated blocks, and allocation errors such as memory leaks.

Chaperon also detects memory blocks that have been allocated and not freed. Such a
block is “in use.” If a block is in use and cannot be reached by starting from the stac
statically allocated regions, and proceeding through already reached allocated blo
then the block is a “memory leak.” The block could not be freed without some pointer to
specify its address as the parameter to free(). At exit() Chaperon reports memory
leaks automatically.

When Chaperon detects improper behavior, it issues an error message identifying the
kind of error and the place where it occurred. Improper behavior is considered to b
access to a logically unallocated region, a Read (or Modify) access to bytes that h
been allocated but not yet Written, and errors or abuses of the malloc/free protocol, su
as attempting to free the same block twice.

2.2 Source Code Instrumentation

When a more in-depth analysis of the code is required, use the Source Code
Instrumentation mode. This mode provides comprehensive memory and error che
through the creation of an instrumented executable of the program. Utilizing the
techniques of Source Code Instrumentation (SCI) (patent #5,581,696) and Runtim
Pointer Tracking (RPT) (patent # 5,842,019) to develop a comprehensive knowledge
the software, Insure++ builds a database of all program elements, including data
structures, memory usage, pointer usage, and interfaces.

Source Code Instrumentation parses, analyzes, and converts the original source c
into a new, equivalent source code. The equivalent code is stored in a temporary file
is passed to the compiler, which generates the object code. Throughout the process,
original source code file is not modified and the entire procedure does not require
user intervention. Once all of the files in the project are instrumented, they are link
into a final executable, which is then ready for runtime error detection.

During compilation Insure++ inserts test and analysis functions around every line o
source code. At runtime Insure++ checks each data value and memory reference a
its database to verify consistency and correctness. Because Source Code Instrume
allows Insure++ to get deep inside the application under test, it is significantly mor
precise and thorough than object-level technologies.

2.2.1 Mutation Testing

The Source Code Instrumentation mode also uses Mutation Testing, which is the process
of rewriting source code to flush out ambiguities that can cause errors, such as bad
constructors. Insure++ reads the source code and writes out new source code tha
functionally equivalent to the original code but also contains error checking code.
2

s, the
t

ficult

ase.
dible

am, it
a

ets
tested
ve
ore

 a
lowing

to
 been
During the error-detection process, the “functionally equivalent” mutants are run in
place of the original source code. If the original program does not contain problem
mutants should not perform any differently than the original program. A mutant tha
performs differently than the original code indicates a serious error in the original
program. Through this method, Insure++ is able to uncover ambiguities that are dif
to detect with any other method or tool. This is particularly important in C++. For
example, Mutation Testing can detect the following types of errors:

• Lack of copy constructors or bad copy constructors.

• Missing or incorrect constructors.

• Wrong order of initialization of code.

• Problems with operations of pointers.

2.2.2 Runtime Pointer Tracking

This technology checks every read and write to memory against an accumulated
database of pointers and blocks. As memory management commands such as malloc,
new, delete, and free are executed, Insure++ updates the memory usage datab
This allows Insure++ to track memory accesses in all memory segments with incre
precision. Because Insure++ monitors all pointers and memory blocks in the progr
can detect the instruction which overwrites the last pointer to a memory block. As
result, developers can tell when, and at which line of code, the leak occurred.

2.3 Additional Features

2.3.1 Coverage Analysis with TCA

The Total Coverage Analysis (TCA) add-on works hand-in-hand with Insure++. It l
developers get “beneath the hood” of the program to see which parts are actually
and how often each block is executed. In conjunction with Insure++, this can impro
the efficiency of testing and help developers shorten the time required to deliver m
reliable programs.

Coverage analysis information is automatically built in whenever a project is
instrumented with Insure++. TCA groups code into logical blocks, where a block is
group of statements that must always be executed as a group. For example, the fol
code has three statements, but only one block.

i = 3;
j = i+3;
return i+j;

Because TCA reports coverage by blocks instead of lines, developers don’t need
analyze as much data and they can actually see which paths and statements have
executed.
3

vents.

.

t

ickly

ly, or

 to

t them
+ is

tly
mpile
For more information, please refer to our white paper, Maximizing Test-Suite Coverage:
The TCA Solution.

2.3.2 Memory Optimization with Inuse

It can be difficult to fully understand the implications of dynamically allocating memory
blocks in a program. Inuse is a graphical utility that allows developers to watch how a
program handles memory in real-time. Inuse allows developers to:

• Look for memory leaks.

• See how much memory an application uses in response to particular user e

• Check the memory usage of an application to see if it matches expectations

• Look for memory fragmentation to see if different allocation strategies migh
improve performance.

• Analyze memory usage by function, call stack, and block size.

• Verify that the program works as intended.

For more information, please refer to our white paper, Avoiding Dynamic Memory
Problems: A New Solution for Developers.

2.3.3 Threads

Insure++ can “run” multi-threaded applications and detect errors in the threads.
Insure++ is able to instrument all threads, track all processes in the application, qu
pinpoint problems, and report specific information on errors found. Insure++ allows
developers of multi-threaded applications to rapidly find and fix bugs that would
otherwise remain hidden in threads and cause the application to perform incorrect
fail to perform at all.

For more information, please refer to our white paper, Threads++: A New Solution
the Multithreading Dilemma.

3. How to Use Insure++

Insure++ can be used during the development process to detect errors and preven
from causing even bigger problems near the end of the project. The earlier Insure+
used in the development process the better. You can incorporate Insure++ into the
nightly builds that automatically build the application every night. The minimal nigh
build should pull all necessary code from the source code repository, clean and co
4

that code, then build the application. The ideal nightly build should also run all available
test cases (both unit test suites and application test suites, including Insure++) and report
any failures that occur. At least, this process minimizes the overhead involved in
assembling the application pieces. At best, it ensures that the application continues to
run as expected and detects any errors introduced by newly integrated code.

If Insure++ cannot be used on a daily basis, it can also be used in another way. For
example, say there is an error that is causing a program to crash. The following
procedure provides a plan of attack for finding the crash-causing error.

1. Start with Chaperon mode and run Insure++ on the non-instrumented executable.

2. If any errors are reported, fix them.

If no errors are reported in Chaperon mode, start using Source Code Instrumen-
tation to instrument each file, one by one, where the error might be located.

3. Keep extending instrumentation file by file until the entire application has been
covered, or until the errors are found.

The example below illustrates how more errors are uncovered in an application as the
level of error detection is increased.

Note: In this section, the error messages are taken from the Windows NT version of
Insure++ as displayed in the Insra window. The Insra window is also available in the
UNIX versions.

3.1 Using Chaperon

For situations that require a quick overview of the code, Chaperon gives developers a
fast, accurate analysis while uncovering extremely complex errors such as memory
leaks, memory reference errors, and memory corruption.

For example, say we have a program that is a simple text editor called editor_demo.
The program appears to run perfectly well when we exercise some of its functions (i.e.
opening a new file, clicking the Help icon, etc.). But when the existing executable file is
run with Insure++ in Chaperon mode, two errors are reported in two of its source files,
as shown in Figure 1. On Windows this is accomplished by opening the Insra window,
choosing File> Run, and selecting the executable. On Linux, this is accomplished by
creating an executable and running it with the command chaperon <program
name>.
5

Figure 1. Insure++ error report in Insra for editor_demo (Chaperon)

The messages are displayed in the Insra error display GUI. The READ_OVERFLOW
message refers to a structured reference that is out of range. The READ_DANGLING
message refers to an attempt to perform a read from a dangling pointer. Double-clicking
the error message opens a message window (shown in Figure 2) that displays more
detailed information about the error message, as well as the stack trace.

Figure 2. Error message window for READ_OVERFLOW

File Name and
Line Number
Where Error
Occurred

Message
Error

Code
Source
6

3.2 Using Source Code Instrumentation

In the previous section Chaperon was used on an executable. Chaperon provides a very
effective mode of error detection, but is not quite as thorough as Source Code
Instrumentation. Though Source Code Instrumentation is more extensive in its testing
functions than Chaperon, it can be much slower.

To minimize the time necessary for testing, developers do not have to instrument the
entire application with Insure++; they can instrument one file at a time. Using the same
example we used in the section for Chaperon (editor_demo), we select and
instrument the file funcs.cpp (shown in Figure 3). On UNIX this is accomplished by
substituting the command insure for your compiler. In Developer Studio on
Windows, this is accomplished by selecting the file and clicking a button in the Insure++
tool bar.

#include <stdlib.h>

int alloc1() {
char *a;
a = new char;
free(a);
return 0;

}

int delmis1() {
int *a = new int [5];
delete a;
return 0;

}

Figure 3. funcs.cpp

When the application is recompiled, relinked, and run with Insure++, two new errors are
reported by Insure++ in the Insra display window, as shown in Figure 4.
7

Figure 4. Insure++ error report in Insra

The errors found in funcs.cpp are for a memory allocation conflict and the
inconsistent use of a delete operator. When the entire application is instrumented and
run with Insure++, memory leaks are detected as shown in Figure 5.

For funcs.cpp
Messages
Error
8

Figure 5. Insure++ error report for editor_demo (full instrumentation)

This additional error is for memory leak leaving scope. A function contains a local
variable that points to a block of memory but the function returns without saving the
pointer in a global variable or passing it back to its caller.

Message
Memory Leak
9

hed
stem

IX

tack,
t
tain

or

4. What Insure++ Finds

Insure++ finds elusive types of errors in C/C++ applications. Most of these errors fall
into three major categories:

• Memory Reference Errors: Including memory corruption, pointer abuse,
memory leaks, dynamic memory manipulation, and strings.

• Programming and Third-Party Library Interface Errors: Including data
representation and variable declaration problems, I/O statements, mismatc
arguments, invalid parameters in system calls, and unexpected errors in sy
calls.

• C++-Specific Errors: Including problems with inconsistent usage of delete
operators and memory allocation conflicts.

Note: The error messages displayed in this section are taken from the standard UN
version of Insure++.

4.1 Memory Reference Errors

Insure++ checks all types of memory references, including those to static (global), s
and shared memory, as well as dynamically allocated memory. Even programs tha
compile, produce correct results, and have a large commercial distribution can con
memory reference errors. These errors are land mines in the memory space, lying
dormant until a program accesses the erroneous memory location(s), causing the
program to execute incorrectly or crash.

4.1.1 Memory Corruption

These errors can be particularly unpleasant, especially if they are well-disguised. F
example, the program shown in Figure 6 concatenates the arguments given on the
10

mes
command line and prints the resulting string. When compiled with a typical compiler
and run, the expected results appear.

1: /*
2: * File: hello.c
3: */
4: main(argc, argv)
5: int argc;
6: char *argv[];
7: {
8: char str[16];
9: int i;
10:
11: str[0] = ’\0’;
12: for(i=0; i<argc; i++) {
13: strcat(str, argv[i]);
14: if(i < (argc-1)) strcat(str, " ");
15: }
16: printf("You entered: %s\n", str);
17: }

Figure 6. hello program with bug

If Figure 7 were the extent of your test procedures, you would probably conclude that
this program works correctly. However, it has a very serious memory corruption error.

$ cc -o hello hello.c
$ hello world
You entered: hello world
$ hello cruel world
You entered: hello cruel world

Figure 7. Test of the hello program

If you compile the program with Insure++, the command “hello cruel world”
generates the errors shown in Figure 8. The string that is being concatenated beco
longer than the 16 characters allocated in the declaration at line 8.
11

[hello.c:13] **WRITE_OVERFLOW**
>> strcat(str, argv[i]);

Writing overflows memory: str

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
| 16 | 2 |
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Writing (w) : 0xf7fff8a8 thru 0xf7fff8b9
(18 bytes)

To block (b) : 0xf7fff8a8 thru 0xf7fff8b7
(16 bytes)
str, declared at hello.c, 8

main() hello.c, 13

Memory corrupted. Program may crash!!

[hello.c:16] **READ_OVERFLOW**
>> printf(“You entered: %s\n”, str);

String is not null terminated within range: str

Reading : 0xf7fff8a8 thru 0xf7fff8b9 (18 bytes)
From block : 0xf7fff8a8 thru 0xf7fff8b7 (16 bytes)

str, declared at hello.c, 8

main() hello.c, 16

You entered: hello cruel world

Figure 8. Insure++ error report for the hello program

Insure++ finds problems related to overwriting memory or reading past the legal bounds
of an object, regardless of whether it is allocated statically (through a global variable),
locally on the stack, dynamically (with malloc), or even as a shared memory block. It
also detects when a pointer crosses from one block of memory into another and starts to
overwrite memory there, even if the memory blocks are adjacent.

4.1.2 Pointer Abuse

Problems with pointers are among the most difficult encountered by C and C++
programmers. Insure++ detects pointer-related problems in the following categories:

• Operations on NULL pointers.

• Operations on uninitialized pointers.

• Operations on pointers that don’t actually point to valid data.
12

t at

lly

n that
ugh

house
• Operations which try to compare or otherwise relate pointers that don’t poin
the same data object.

• Attempts to make function calls through function pointers which don’t actua
point to functions.

Figure 9 shows the code for a second version of the “hello” program that uses
dynamic memory allocation. When this program is compiled and run with Insure++, an
“uninitialized pointer” error at line 22 is reported, because the first time through the
argument loop the variable string_so_far has not been set to anything.

1 /*
2: * File: hello.c
3: */
4: #include <malloc.h>
5:
6: main(argc, argv)
7: int argc;
8: char *argv[];
9: {
10: char *string, *string_so_far;
11: int i, length;
12:
13: length = 1; /* Include last NULL */
14:
15: for(i=0; i<argc; i++) {
16: length += strlen(argv[i])+1;
17: string = malloc(length);
18: /*
19: * Copy the string built so far.
20: */
21: if(string_so_far != (char *)0)
22: strcpy(string, string_so_far);
23: else *string = ’\0’;
24:
25: strcat(string, argv[i]);
26: if(i < argc-1) strcat(string, " ");
27: string_so_far = string;
28: }
29: printf("You entered: %s\n", string);

Figure 9. hello program with dynamic memory allocation

4.1.3 Memory Leaks

Memory leaks can be extremely difficult to detect because they can take days of
continuous execution to cause a failure. Small leaks in low level routines can mea
the function might be called thousands or even millions of times before it loses eno
memory to crash the system. This is exactly the type of subtle bug that survives in-
13

we

1.
testing only to show up when a customer uses the program for some enormous
processing task.

A memory leak occurs when a piece of dynamically allocated memory can no longer be
freed because the program no longer contains any pointers to that block. A simple
example of this behavior can be seen by running the (corrected) “hello” program with
the arguments:

hello this is a test

If we examine the state of the program just prior to execution of line 27 (Figure 9),
find:

• The variable string_so_far points to the string “hello”, which it was
assigned as a result of the previous loop iteration.

• The variable string points to the extended string “hello this”, which was
assigned on this loop iteration.

These assignments are shown schematically in Figure 10 - both variables point to
different blocks of dynamically allocated memory.

But when line 27 is executed,

string_so_far = string;

both variables are made to point to the longer memory block, as shown in Figure 1

Figure 10. Pointer assignments before the memory leak

h e l l o t h i s \0

h e l l o \0

string

string_so_far
14

gure

s to
they

ck

o a
al
Once this has happened, there is no remaining pointer that points to the shorter block.
There is now no way that the memory that was previously pointed to by
string_so_far can be reclaimed; it is permanently allocated. When this program is
compiled and run with Insure++, a “memory leak” error is reported, as shown in Fi
12.

[hello.c:27] **LEAK_ASSIGN**
>> string_so_far = string;

Memory leaked due to reassignment: string

Lost block: 0x0001fbb0 thru 0x0001fbb6 (7 bytes)
string, allocated at hello.c, 17

Stack trace where the error occurred:
main() hello.c, 27

Figure 12. Insure++ error report for memory leak in hello program

Since this error is caused when a pointer is re-assigned, it is known as LEAK_ASSIGN
in Insure++. Other types of memory leaks detected by Insure++ include:

• LEAK_FREE: Occurs when you free a block of memory that contains pointer
other memory blocks. If no other pointers point to these secondary blocks,
are permanently lost and will be reported by Insure++.

• LEAK_RETURN: Occurs when a function returns a pointer to an allocated blo
of memory but the returned value is ignored in the calling routine.

• LEAK_SCOPE: Occurs when a function contains a local variable that points t
block of memory but the function returns without saving the pointer in a glob
variable or passing it back to its caller.

4.1.4 Dynamic Memory Manipulation

With dynamically allocated memory, programs often continue running after a
programming error corrupts the memory; sometimes they don’t crash at all. One
common mistake is trying to reuse a pointer after it has already been freed. This
“dangling pointer” problem often goes unnoticed, because many machines and
compilers allow this particular behavior.

Figure 11. Pointer assignments after the memory leak

h e l l o t h i s \0

h e l l o \0

string
string_so_far
15

y

rror
or
and
you
In addition to dangling pointers, Insure++ detects many other dynamic memory bugs
including:

• Freeing the same memory block multiple times.

• Attempting to delete or free statically allocated memory.

• Freeing stack memory (local variables).

• Passing a pointer to delete or free that doesn’t point to the start of a memor
block.

• Calls to delete or free with NULL or uninitialized pointers.

• Passing nonsensical arguments or arguments of the wrong data type to malloc,
calloc, realloc or free.

• Mismatch between calls to new [] and delete [].

• Mixing calls between malloc, new, free, and delete. For example,
obtaining a pointer with malloc and freeing it with delete.

• Problems with overloading new and delete operators.

Insure++ also helps uncover dynamic memory problems through its
RETURN_FAILURE error code. For example, Insure++ does not normally issue an e
message if malloc, returns a NULL pointer because it is out of memory. This behavi
is the default because it is assumed that the user program is already checking for
handling this case. However, if your program appears to be failing for this reason,
can enable the RETURN_FAILURE error message class. Insure++ will then print a
message whenever a system call fails.

The program in Figure 13 has an error in calling operator delete at line 34. The new
operator at line 29 allocated an array of class objects first. The array is deallocated
with the delete operator. However, the delete operator is not called with [], so it
doesn’t call the destructor for the store class for each element of the array first. This
type of behavior can lead to serious problems in C++ programs.
16

1: #include <iostream.h>
2: #include <stdlib.h>
3: #include <string.h>
4: #define SIZE 128

 5:
6: class store{
7: public:
8: store(int sz=24){size = sz;}
9: ~store(){size=0; cout << “Deleting:” << ptr ;}

10: int copy(char *src){
11: int len;
12:
13: len = strlen(src);
14: if(len > size)return(0);
15: strcpy(ptr,src);
16: return(len);
17: }
18: protected:
19: char ptr[SIZE];
20: int size;
21: };
22:
23: main()
24: {
25: class store *first;
26: int limit=5,i;
27: char local[128];
28:
29: first = new store[limit];
30: for(i=0;i<limit;i++){
31: sprintf(local,”Element %d\n”,i);
32: first[i].copy(local);
33: }
34: delete first;
35: }

Figure 13. Program with error in delete

When this program is compiled and run with Insure++, a “delete mismatch” error is
reported, as shown in Figure 14.

[bracket.C:33] **DELETE_MISMATCH**
>> delete first;
Inconsistent usage of delete operator: first
array deleted without []
Stack trace where the error occurred:

main() bracket.C, 33

Figure 14. Insure++ error report for delete[]
17

4.1.5 Strings

Though the standard C library string handling functions are useful, unfortunately they
are also a rich source of potential errors. They do very little checking on the bounds of
the objects being manipulated. Insure++ detects most string-related problems such as
overwriting the end of a buffer and using strings without null terminators.

4.2 Programming and Third-Party Library Interface Errors

Like memory reference errors, programming errors act as land mines in the program.
When executed, programs containing them encounter problems ranging from incorrect
values to system crashes. Third-party errors are particularly tricky to handle. When a
program crashes in the third-party code, it might be because either the library was
passed incorrect parameters by the user or there is an actual bug in the third-party code.
Programming errors, and library interface errors in particular, can also cause difficulties
porting code across platforms due to architectural idiosyncrasies.

Insure++ is able to discover both of these types of problems and provide diagnostics
about which of the problems occurred. Providing this type of information is critical
because source code for the third-party library is generally not available, and it is not
enough just to say that the bug occurred in the library. If the bug in the third-party library
was caused by passing incorrect parameters, you can easily remedy it. But if the bug is
caused by a fault in the library, then all that can be done is report it to the vendor.

Insure++ can discover bugs in the third-party library even if the source code to the
library is not available. The bugs are discovered by the code that Insure++ links to the
application. When the third-party library executes, the Insure++ library checks the code
in the third-party library for memory overwrites, dynamic memory problems, and more.

4.2.1 Data Representation and Variable Declaration Problems

Many programs make either explicit or implicit assumptions about the various data
types on which they operate. On many workstations, pointers and integers have the same
number of bytes. While some of these problems can be detected during compilation,
some codes go to great lengths to hide these problems with typecasts such as:

char *p;
int ip;

ip = (int)p;

On many systems, this type of operation is valid and causes no problems. However,
problems can arise when this code is ported to other architectures. For example, the code
shown above will fail when executed on a PC (16-bit integer, 32-bit pointer) or a 64-bit
architecture such as DEC TruUnix64 (32-bit integer, 64-bit pointer). In cases where the
18

ed,

nt
s

+
operation loses information, Insure++ will report an error. On machines for which the
data types have the same number of bits, no error is reported.

Insure++ also detects inconsistent declarations of variables between source files. For
example, an object might be declared as an array in one file, but as a pointer in another.
Insure++ reports size differences so that an array declared as one size in one file and
another in a second will be detected.

4.2.2 I/O Statements

The printf and scanf family of functions are easy places to make mistakes which
show up either as bugs or portability problems. For instance, data input into a variable
with data type double will be incorrect when the format specified in the call to scanf
is different (for example, float).

In addition to checking printf and scanf arguments, Insure++ also detects errors in
other I/O statements. The code

foo(line)
char line[80];

{
gets(line);

}

works as long as the input supplied by the user is shorter than 80 characters, but fails on
longer input. Insure++ checks for this case and reports an error if necessary.

4.2.3 Mismatched Arguments

Calling functions with incorrect arguments is a common and often overlooked problem
in many programs. Insure++ automatically detects the argument mismatches described
below.

• Sign errors: Arguments agree in type but one is signed and the other unsign
e.g., int vs. unsigned int.

• Compatible types: The arguments are different data types which happen to
occupy the same amount of memory on the current machine, e.g. int vs. long,
if both are thirty-two bits. While this error may not cause problems on your
current machine, it is a portability problem.

• Incompatible types: Data types are fundamentally different or require differe
amounts of memory. int vs. long would appear in this category on machine
where they require different numbers of bits.

• Alias errors: If you use typedef to define new names for data types, Insure+
generates an error when you use them inconsistently.
19

 error
tions
ystem
 a

ll
ilures.
ndling

4.2.4 Invalid Parameters in System Calls

Interfacing to library software is often tricky because passing an incorrect argument to a
routine might cause it to fail inconsistently. Debugging such problems is much harder
than correcting your own code since you typically have much less information about
how the library routine should work. Insure++ has built-in knowledge of a large number
of system calls and checks the arguments to ensure correct data type and, if appropriate,
range. For example, the code

myrewind(fp)
FILE *fp;

{
fseek(fp, (long)0, 3);

}

will cause an error, since the last argument passed to the fseek function is outside the
legal range.

Insure++ includes built-in interface tests for hundreds of libraries. You can construct
additional interface checks easily with Insure++’s interface definition features.

4.2.5 Unexpected Errors in System Calls

Checking return codes from system calls and dealing correctly with all the possible
cases that can arise is very difficult. Exhaustive testing of all the possible combina
is almost impossible. As a result, programs can fail unexpectedly because some s
call fails in a way that had not been anticipated. The consequences can range from
“core dump” to an infrequent, unrepeatable error.

Insure++ has a special error class, RETURN_FAILURE, that detects these problems. A
system calls known to Insure++ contain special error checking code that detects fa
Normally, these errors are suppressed since it is assumed that the application is ha
them itself, but they can be enabled at runtime. With RETURN_FAILURE enabled
Insure++ detects errors in system calls. It prints the routine name, arguments, and an
error description for the following errors:

• malloc runs out of memory.

• Files which don’t exist.

• Incorrectly set permission flags.

• Incorrect use of I/O routines.

• Exceeding the limit on open files.

• Interprocess communication and shared memory errors.

• Unexpected “interrupted system call” errors.
20

Insure++ understands standard UNIX and Windows system calls, the X Window
System, Motif, and many other popular libraries.

4.3 Errors Specific to C++

Insure++ uncovers a number of errors specific to the C++ language, including memory
allocation conflicts and inconsistent usage of the delete operator.

4.3.1 Inconsistent Usage of Delete Operator

The current version of ANSI C++ distinguishes between memory allocated with new
and new[]. A delete call must (according to the standard) match the new call, i.e.
whether or not it has []. Calling new[] and delete might cause the compiler to not
call the destructor on each element of the array, which can lead to serious errors. Even
worse, if the memory was allocated differently, memory may be corrupted. This is
definitely poor practice and unlikely to work with future releases of the specific
compiler.

The code in Figure 15 shows a block of memory allocated with new[] and freed with
delete, without [].

1: /*
2: * File: delmis1.cpp
3: */
4:
5: int main() {
6: int *a = new int [5];
7: delete a;
8: return 0;
9: }

Figure 15. Program delmis1.cpp

When this program is compiled and run with Insure++, a “delete mismatch” error is
reported, as show in Figure 16.

[delmis1.cpp:7] **DELETE_MISMATCH**
>> delete a;

Inconsistent usage of delete operator: a

array deleted without []
a, allocated at:

main() delmis1.cpp, 6

Stack trace where the error occurred:
main() delmis1.cpp, 7

Figure 16. Insure++ error report for delmis1.cpp
21

use a

ct”
4.3.2 Memory Allocation

This error is generated when a memory block is allocated with new (malloc) and
freed with free (delete). Insure++ distinguishes between two possible causes of
this problem.

• badfree: Memory was allocated with new or new[] and an attempt was
made to free it with free.

• baddelete: Memory was allocated with malloc and an attempt was made to
free it with delete or delete[].

Some compilers allow this, but it is not a good programming practice and might ca
problem with portability.

The code in Figure 17 shows a typical example of this error, allocating a block of
memory with malloc and then freeing it with delete.

1: /*
2: * File: alloc2.cpp
3: */
4: #include <stdlib.h>
5:
6: int main() {
7: char *a;
8:
9: a = (char *) malloc(1);
10: delete a;
11: return 0;
12: }

Figure 17. Program with error in allocating memory

When this program is compiled and run with Insure++, a “memory allocation confli
error is reported, as show in Figure 18.

[alloc2.cpp:10] **ALLOC_CONFLICT**
>> delete a;

 Memory allocation conflict: a

 delete operator used to deallocate memory not
 allocated by new
 block allocated at:
 malloc()(interface)
 main()alloc2.cpp, 9

 Stack trace where the error occurred:
 main()alloc2.cpp, 10

Figure 18. Insure++ error report for alloc2.cpp
22

,

rtran,
5. Conclusion

Even programs that compile, produce correct results, and have a large commercial
distribution can contain elusive errors such as memory references and memory leaks.
Insure++ can detect these errors during development and prevent them from holding up
a project, or appearing at a user site.

6. Availability

Insure++ is available now at http://www.parasoft.com. To learn more about how
Insure++ and other ParaSoft development tools can help your department prevent and
detect errors, talk to a Software Quality Specialist today at 1-888-305-0041 (U.S.A.
only), or visit http://www.parasoft.com.

6.1 Platforms

Insure++ is available for the following platforms (64-bit support is available on selected
platforms).

• Windows NT/2000

• UNIX, including: DEC (Alpha 4.x, TruUnix64 5), HP (HPUX 10.x & 11.x),
IBM (AIX 4.3.x), Linux (glibc 2.2.4 or higher), SGI (Irix 6.5), Solaris/Sparc (7
8), and Solaris x86 (7, 8)

6.2 Compiler Compatibility

Insure++ works with all popular compilers.

• Windows: integrates into Visual C++ 6.0.

• UNIX: compilers include CC, gcc, and HP C++.

Insure++ can also check modules written in languages other than C++, such as Fo
Ada, Pascal, etc.
23

7. Contacting ParaSoft

USA

2031 S. Myrtle Ave.
Monrovia, CA 91016
Tel: (888) 305-0041 (toll-free)
(626) 305-0041
Fax: (626) 305-3036
E-mail: info@parasoft.com
URL: www.parasoft.com

Europe

France: Tel: (33 1) 64 89 26 00
UK: Tel: +44 (020) 8263 2827
Germany: Tel: (49) 7805/9569 -60
Mail: info-europe@parasoft.com
24

	1. Introduction
	2. How Insure++ Works
	2.1 Chaperon
	2.2 Source Code Instrumentation
	2.2.1 Mutation Testing
	2.2.2 Runtime Pointer Tracking

	2.3 Additional Features
	2.3.1 Coverage Analysis with TCA
	2.3.2 Memory Optimization with Inuse
	2.3.3 Threads

	3. How to Use Insure++
	3.1 Using Chaperon
	3.2 Using Source Code Instrumentation

	4. What Insure++ Finds
	4.1 Memory Reference Errors
	4.1.1 Memory Corruption
	4.1.2 Pointer Abuse
	4.1.3 Memory Leaks
	4.1.4 Dynamic Memory Manipulation
	4.1.5 Strings

	4.2 Programming and Third-Party Library Interface Errors
	4.2.1 Data Representation and Variable Declaration Problems
	4.2.2 I/O Statements
	4.2.3 Mismatched Arguments
	4.2.4 Invalid Parameters in System Calls
	4.2.5 Unexpected Errors in System Calls

	4.3 Errors Specific to C++
	4.3.1 Inconsistent Usage of Delete Operator
	4.3.2 Memory Allocation

	5. Conclusion
	6. Availability
	6.1 Platforms
	6.2 Compiler Compatibility

	7. Contacting ParaSoft

