i

ParaSoft’

] ParaSoft’
insure++

Insure++:
An Automatic Runtime

Error Detection Tool



i ParaSoft
insure+-+

1. Introduction

Insure++ is an automatic runtime error detection tool for C/C++ applications that
uncovers problems such as memory corruption, memory leaks, pointer errors, and I/O
errors. By using a unique set of patented technologies, Insure++ thoroughly examines
and tests the code from inside and out, then reports errors and pinpoints their exact
location. Insure++ also performs coverage analysis, clearly indicating which sections of
the code were tested, and facilitates memory optimization, displaying how the program
uses memory in real-time. By integrating Insure++ into your development environment,
developers can save weeks of debugging time and prevent costly crashes from affecting
your customers.

Unfortunately, development tools like Insure++ usually aren’t called into action until the
end of a software project, when particularly difficult bugs causing erratic behavior
cannot be found. The typical crisis cycle goes something like this: developers exhaust all
options searching for the source of a bug, they give up, they use Insure++, Insure++
finds the bug, the developers fix the bug, and then move on until the next crisis hits.

This crisis cycle could be broken, resulting in less aggravation and less time spent
debugging, if Insure++ was incorporated into the software development process earlier.
Insure++ has been used on C/C++ applications with hundreds of thousands of lines of
code; multi-process applications, programs distributed over hundreds of workstations,
operating systems, and compilers have been validated with Insure++. This paper
describes Insure++'s modes of operation, how to implement Insure++ in the
development process, and the types of errors Insure++ uncovers.

2. How Insure++ Works

Insure has two modes of operation that provide developers with varying degrees of error
checking: Chaperon for a quick check and Source Code Instrumentation for deep error
checking. This gives developers a large amount of flexibility when it comes to
maximizing their development and debugging time. In both modes, when Insure++ finds
a problem, it provides a complete diagnosis, including the names of related variables,
the line of source code containing the error, a description of the error, and a stack trace.

2.1 Chaperon

Insure++’s latest technology--Chaperon--works with existing executable programs.
Chaperon does not require any recompiling and relinking, or changing of environment
variables. Though less intensive than Source Code Instrumentation mode, Chaperon is
more expedient. It checks all data memory references made by a process, whether in
compiled code, language support routines, or shared or archived libraries. It also detects



i ParaSoft
insure+-+

and reports reads of uninitialized memory, reads or writes that are not within the bounds
of allocated blocks, and allocation errors such as memory leaks.

Chaperon also detects memory blocks that have been alocated and not freed. Such a

block is “in use.” If a block is in use and cannot be reached by starting from the stack, or
statically allocated regions, and proceeding through already reached allocated blocks,
then the block is a “memory leak.” The block could not be freed without poimger to
specify its address as the parametdrrtee() . Atexi t () Chaperon reports memory
leaks automaticall

When Chaperon detects improper behgviassues an error message identifying the

kind of error and the place where it occurred. Improper behavior is considered to be any
access to a logically unallocated region, a Read (or Modify) access to bytes that have
been allocated but not ydtritten, and errors or abuses of the malloc/free protocol, such
as attempting to free the same block twice.

2.2 Source Code Instrumentation

When a more in-depth analysis of the code is required, use the Source Code
Instrumentation mode. This mode provides comprehensive memory and error checking
through the creation of an instrumented executable of the program. Utilizing the
techniques of Source Code Instrumentation (SCI) (patent #5,581,696) and Runtime
PointerTracking (RPT) (patent # 5,842,019) to develop a comprehensive knowledge of
the software, Insure++ builds a database of all program elements, including data
structures, memory usage, pointer usage, and interfaces.

Source Code Instrumentation parses, analyzes, and converts the original source code
into a nev, equivalent source code. The equivalent code is stored in a temporary file that
Is passed to the compijJavhich generates the object code. Throughout the process, the
original source code file is not modified and the entire procedure does not require any
user intervention. Once all of the files in the project are instrumented, they are linked
into a final executable, which is then ready for runtime error detection.

During compilation Insure++ inserts test and analysis functions around every line of
source code. At runtime Insure++ checks each data value and memory reference against
its database to verify consistency and correctness. Because Source Code Instrumentation
allows Insure++ to get deep inside the application under test, it is significantly more
precise and thorough than object-level technologies.

2.2.1 Mutation Testing

The Source Code Instrumentation mode also uses Mufgiimg, which is the process

of rewriting source code to flush out ambiguities that can cause errors, such as bad copy
constructors. Insure++ reads the source code and writes out new source code that is
functionally equivalent to the original code but also contains error checking code.



i ParaSoft
insure+-+

During the error-detection process, the “functionally equivalent” mutants are run in
place of the original source code. If the original program does not contain problems, the
mutants should not perform any differently than the original program. A mutant that
performs differently than the original code indicates a serious error in the original
program. Through this method, Insure++ is able to uncover ambiguities that are difficult
to detect with any other method or tool. This is particularly important in C++. For
example, Mutation Testing can detect the following types of errors:

» Lack of copy constructors or bad copy constructors.
e Missing or incorrect constructors.
« Wrong order of initialization of code.

» Problems with operations of pointers.

2.2.2 Runtime Pointer Tracking

This technology checks every read and write to memory against an accumulated
database of pointers and blocks. As memory management commands rsalch @s,

new, del et e, andf r ee are executed, Insure++ updates the memory usage database.
This allows Insure++ to track memory accesses in all memory segments with incredible
precision. Because Insure++ monitors all pointers and memory blocks in the program, it
can detect the instruction which overwrites the last pointer to a memory block. As a
result, developers can tell when, and at which line of code, the leak occurred.

2.3 Additional Features
2.3.1 Coverage Analysis with TCA

The Total Coverage Analysis (TCA) add-on works hand-in-hand with Insure++. It lets
developers get “beneath the hood” of the program to see which parts are actually tested
and how often each block is executed. In conjunction with Insure++, this can improve
the efficiency of testing and help developers shorten the time required to deliver more
reliable programs.

Coverage analysis information is automatically built in whenever a project is
instrumented with Insure++. TCA groups code into logical blocks, where a block is a
group of statements that must always be executed as a group. For example, the following
code has three statements, but only one block.

i 3;
i i +3;
return i+j;

Because TCA reports coverage by blocks instead of lines, developers don’t need to
analyze as much data and they can actually see which paths and statements have been
executed.



i ParaSoft
insure+-+

For more information, please refer to our white paper, Maximizing Test-Suite Coverage:
The TCA Solution.

2.3.2 Memory Optimization with Inuse

It can be difficult to fully understand the implications of dynamically alocating memory
blocksin aprogram. Inuseis agraphical utility that allows developers to watch how a
program handles memory in real-time. Inuse allows developers to:

e Look for memory leaks.
* See how much memory an application uses in response to particular user events.
» Check the memory usage of an application to see if it matches expectations.

* Look for memory fragmentation to see if different allocation strategies might
improve performance.

* Analyze memory usage by function, call stack, and block size.
« Verify that the program works as intended.

For more information, please refer to our white paper, Avoiding Dynamic Memory
Problems: A New Solution for Developers.

2.3.3 Threads

Insure++ can “run” multi-threaded applications and detect errors in the threads.
Insure++ is able to instrument all threads, track all processes in the application, quickly
pinpoint problems, and report specific information on errors found. Insure++ allows
developers of multi-threaded applications to rapidly find and fix bugs that would
otherwise remain hidden in threads and cause the application to perform incorrectly, or
fail to perform at all.

For more information, please refer to our white paper, Threads++: A New Solution to
the Multithreading Dilemma.

3. How to Use Insure++

Insure++ can be used during the development process to detect errors and prevent them
from causing even bigger problems near the end of the project. The earlier Insure++ is
used in the development process the better. You can incorporate Insure++ into the
nightly builds that automatically build the application every night. The minimal nightly
build should pull all necessary code from the source code repository, clean and compile

4



i ParaSoft
insure+-+

that code, then build the application. Theideal nightly build should also run all available
test cases (both unit test suites and application test suites, including Insure++) and report
any failures that occur. At least, this process minimizes the overhead involved in
assembling the application pieces. At best, it ensures that the application continues to
run as expected and detects any errors introduced by newly integrated code.

If Insure++ cannot be used on adaily basis, it can also be used in another way. For
example, say thereisan error that is causing a program to crash. The following
procedure provides a plan of attack for finding the crash-causing error.

1. Start with Chaperon mode and run Insure++ on the non-instrumented executable.
2. |If any errors are reported, fix them.

If no errors are reported in Chaperon mode, start using Source Code I nstrumen-
tation to instrument each file, one by one, where the error might be located.

3. Keep extending instrumentation file by file until the entire application has been
covered, or until the errors are found.

The example below illustrates how more errors are uncovered in an application as the
level of error detection isincreased.

Note: In this section, the error messages are taken from the Windows NT version of
Insuret++ as displayed in the Insrawindow. The Insrawindow is also available in the
UNIX versions.

3.1 Using Chaperon

For situations that require a quick overview of the code, Chaperon gives developers a
fast, accurate analysis while uncovering extremely complex errors such as memory
leaks, memory reference errors, and memory corruption.

For example, say we have a program that is a simple text editor called edi t or _deno.
The program appears to run perfectly well when we exercise some of itsfunctions (i.e.
opening anew file, clicking the Help icon, etc.). But when the existing executablefileis
run with Insure++ in Chaperon mode, two errors are reported in two of its source files,
as shown in Figure 1. On Windows this is accomplished by opening the Insra window,
choosing File> Run, and selecting the executable. On Linux, thisis accomplished by
creating an executable and running it with the command chaper on <pr ogr am
name>.



i ParaSoft
insure+-+

* Insra |- [O] x]
File Meszages Options Help

4. . & @ UL ?
Previous  Mext Delete Suppress  Sort Help

—{E Runtime: Executed "editor_demo", pid=257 File Name and

Error —» - READ_OVERFLOW mainfrm.cpp : 52 <&——— Line Number
Message - varl = new small; Where Error
- var2z = (hig =» varl; occurred
Source —»= = 3> d = var2—>y;
Code . 3
- READ_DANGLING testdlli.cpp : 46

RUNTIME_CLASS ¢CMDIChildWnd>.
RUNTIME_CLASS (CEditUiew>>>;
b2 o int b = =a + 1;

¥
B8 Problem summary
B8 Leak summary

| Messages: 4 | Connections: Mone

Figure 1. Insure++ error report in Insra for edi t or _deno (Chaperon)

The messages are displayed in the Insraerror display GUI. The READ_OVERFLOW
message refersto a structured reference that is out of range. The READ_DANGLING
message refersto an attempt to perform aread from a dangling pointer. Double-clicking
the error message opens a message window (shown in Figure 2) that displays more
detailed information about the error message, as well as the stack trace.

= Message: READ_OVERFLOW mainfrm.cpp : 52 [_[O] x]
File
Runtime: Executed “editor_demo", pid=257
>> d = var2->y;
Reading overflows memory.
bbbhh
41414
PEPPE
Reading {r) @ BxPA5118a8 thru BxBAS118ab (4 hytes)
From block <(h) : BxBA5118a@ thru Bx805118a3 (4 hytes)
block allocated at:
MFC42% Bx5F40384f OO

14 CHainFrame::CMainFrame(}> mainfrm.cpp,. 58

4 CEdApp::InitInstance(> editor_demo.cpp. 3%
MFC42t Bx5F48999F OO

4 WinMaind> appmodul.cpp,. 38
WinMainCRTStartup()

Stack trace where the error occurred:

4 CHainFrame: :CMainFrame (> mainfrm.cpp, 52

4 CEdApp::InitInstance(> editor_demo.cpp. 39
MFC42t Bx5F48999f ()

4 WinMain¢> appmodul.cpp. 38
WinMainCRTStartup)

Figure 2. Error message window for READ_OVERFLOW
6



i ParaSoft
insure+-+

3.2 Using Source Code Instrumentation

In the previous section Chaperon was used on an executable. Chaperon provides a very
effective mode of error detection, but is not quite as thorough as Source Code
Instrumentation. Though Source Code Instrumentation is more extensive in itstesting
functions than Chaperon, it can be much slower.

To minimize the time necessary for testing, developers do not have to instrument the
entire application with Insure++; they can instrument onefile at atime. Using the same
example we used in the section for Chaperon (edi t or _denv), we select and
instrument thefilef uncs. cpp (shown in Figure 3). On UNIX thisis accomplished by
substituting the command i nsur e for your compiler. In Developer Studio on
Windows, thisisaccomplished by selecting the file and clicking abutton in the Insure++
tool bar.

#i ncl ude <stdlib. h>

int allocl() {
char *a;
a = new char;
free(a);
return O;

}

int delmsl() {
int *a =newint [5];
del ete a;
return O;

Figure 3. f uncs. cpp

When the application is recompiled, relinked, and run with Insure++, two new errors are
reported by Insure++ in the Insra display window, as shown in Figure 4.



i ParaSoft
insure+-+

* Insra M[=] 3
File Messages Options Help

4 p & o, Ul ?
Previous  Mext Delete Suppress  Sort Help

—{} Runtime: Executed “editor_demo", pid=257

+ READ_OUERFLOY mainfrm.cpp : 52
+ READ_DANGLING testdlll.cpp = 46
] Problem summary
a8 Leak summary
{} Insure++: Instrumented "C:-Program Files“Parasoft:Insure++.example
—{} RBuntime: Executed "editor_demo", pid=243
+ READ_OUERFLOY mainfrm.cpp : 52
+ READ_DANGLING testdlll.cpp = 46
Error — -E DELETE_MISMATCH funcs.cpp - 12

Messages int delmis1(> ¢
int ®a = new int [51;

For funcs.cpp -
- 33> delete a;
- return B;

\+z:(« ALLOC_CONFLICT funcs.cpp : 6

H
] Problem summary
a8 Leak summary
1] | I

| Messages: 10 Connections: Mone

Figure 4. Insure++ error report in Insra

Theerrorsfound inf uncs. cpp arefor amemory alocation conflict and the
inconsistent use of adel et e operator. When the entire application isinstrumented and
run with Insure++, memory |leaks are detected as shown in Figure 5.



= Insra

File Messages [Oplions Help

4
nggzs
]
8

%

= %
o
£
X
"
a
a

P EREREIEE R

Memory Leak — — &

Message

ParaSoft

insure ++

[_[O] ]

2

Help

a & &,
Mext Delete Suppress  Sort
Frobhlem summary
Leak summary
Insure++:
Runtime: Executed "editor_demo",. pid=185

READ_OQUERFLOY
READ_DANGLING
DELETE_MISMATCH
ALLOC_CONFLICT
Problem summary
Leak summary

Insure++: Instrumented "C:“\Program Files“Parasoft:Insure++examp
Insure++: Instrumented "C:“Program Files“Parasoft:Insure++\examp
Insure++: Instrumented "C:“Program Files“Parasoft:Insure++\examp
Insure++: Instrumented "C:“Program Files“Parasoft~Insure++\examp

Runtime: Executed "editor_demo", pid=253

LEAK_SCOPE
DUWORD = d;

d = new DUORD{425>;

32

extern "C'" int APIENTRY

READ_OQUERFLOY
READ_DANGLING
DELETE_MISMATCH
ALLOC_CONFLICT
Problem summary
Leak summary

Instrumented "C:“Program Files“Parasoft~Insure++\examp

: 12
T b

testdlll.cpp = 21

testdlll _cpp = 46
: 12
T b

s

: b2
: 46

: b2

o

|Ennnechnns'Nnne

Figure 5. Insure++ error report for edi t or _deno (full instrumentation)

This additional error isfor memory leak leaving scope. A function contains alocal
variable that points to ablock of memory but the function returns without saving the

pointer in aglobal variable or passing it back to its caller.



i ParaSoft
insure+-+

4. What Insure++ Finds

Insure++ finds elusive types of errorsin C/C++ applications. Most of these errorsfall
into three major categories:

 Memory Reference Errors: Including memory corruption, pointer abuse,
memory leaks, dynamic memory manipulation, and strings.

e Programming and Third-Party Library Interface Errors. Including data
representation and variable declaration problems, I/O statements, mismatched
arguments, invalid parameters in system calls, and unexpected errors in system
calls.

» C++-Specific Errors: Including problems with inconsistent usage of delete
operators and memory allocation conflicts.

Note: The error messages displayed in this section are taken from the standard UNIX
version of Insure++.

4.1 Memory Reference Errors

Insure++checks all types of memory references, including those to static (global), stack,
and shared memory, as well as dynamically allocated memory. Even programs that
compile, produce correct results, and have a large commercial distribution can contain
memory reference errors. These errors are land mines in the memory space, lying
dormant until a program accesses the erroneous memory location(s), causing the
program to execute incorrectly or crash.

4.1.1 Memory Corruption

These errors can be particularly unpleasant, especially if they are well-disguised. For
example, the program shown in Figure 6 concatenates the arguments given on the

10



i ParaSoft
insure+-+

command line and prints the resulting string. When compiled with atypical compiler
and run, the expected results appear.

1: /*

2: * File: hello.c

3: */

4. mai n(argc, argv)

5: int argc;

6: char *argv[];

7: {

8: char str[16];

9: int i;

10:

11: str[0] = "\0";

12: for(i=0; i<argc; i++) {

13: strcat(str, argv[i]);

14: if(i < (argc-1)) strcat(str, " ");
15: }

16: printf("You entered: %\n", str);
17: }

Figure 6. hel | 0 program with bug

If Figure 7 were the extent of your test procedures, you would probably conclude that
this program works correctly. However, it has a very serious memory corruption error.

$ cc -o hello hello.c

$ hello world

You entered: hello world

$ hello cruel world

You entered: hello cruel world

Figure 7. Test of the hel | 0 program

If you compile the program with Insure++, the commalhel“l o cruel worl d”
generates the errors shown in Figure 8. The string that is being concatenated becomes
longer than the 16 characters allocated in the declaration at line 8.

11



i ParaSoft
insure+-+

[hello.c:13] **WRI TE_OVERFLOW *
>> strcat(str, argv[i]);

Witing overflows menory: str

bbbbbbbbbbbbbbbbbbbbbbbbbbbb
| 16 |2
VAWWWWAMAVWWMAMAWWAAWWWAMAWWMA WY

Witing (w) : Oxf7fff8a8 thru Oxf7fff8b9
(18 bytes)
To bl ock (b) . Oxf7fff8a8 thru Oxf7fff8b7
(16 bytes)
str, declared at hello.c, 8

mai n() hello.c, 13
**Menory corrupted. Program may crash!!**

[hello.c:16] **READ_OVERFLOW *
>> printf(“You entered: %s\n”, str);

String is not null terminated within range: str

Reading : Oxf7fff8a8 thru Oxf7fff8b9 (18 bytes)
From block : Oxf7fff8a8 thru Oxf7fff8b7 (16 bytes)
str, declared at hello.c, 8

main() hello.c, 16

You entered: hello cruel world

Figure 8. Insure++ error report for the hel | 0 program

Insure++ finds problems related to overwriting memory or reading past the legal bounds
of an object, regardless of whether it is allocated statically (through aglobal variable),
locally on the stack, dynamically (with mal | oc), or even as a shared memory block. It
also detects when a pointer crosses from one block of memory into another and startsto
overwrite memory there, even if the memory blocks are adjacent.

4.1.2 Pointer Abuse

Problems with pointers are among the most difficult encountered by C and C++
programmers. Insure++ detects pointer-related problemsin the following categories:

» Operations oMNULL pointers.
e Operations on uninitialized pointers.
« Operations on pointers that don’t actually point to valid data.

12



i ParaSoft
insure+-+

» Operations which try to compare or otherwise relate pointers that don’t point at
the same data object.

* Attempts to make function calls through function pointers which don't actually
point to functions.

Figure 9 shows the code for a second version offiké I'0” program that uses
dynamic memory allocation. When this program is compiled and runingthe++, an
“uninitialized pointer” error at line 22 is reported, because the first time through the
argument loop the variabsd ri ng_so_f ar has not been set to anything.

1 /*

2: * File: hello.c

3: */

4: #i ncl ude <nall oc. h>

5:

6: mai n(argc, argv)

7. int argc;

8: char *argv[];

9: {

10: char *string, *string so far;

11: int i, length;

12:

13: length = 1; /* Include [ast NULL */
14:

15: for(i=0; i<argc; i++) {

16: I ength += strlen(argv[i]) +1;

17: string = mal loc(l ength);

18: /*

19: * Copy the string built so far.

20: */

21: if(string _so far !'= (char *)0)

22: strcpy(string, string so far);
23: el se *string = '\0’;

24.

25: strcat(string, argv[i]);

26: if(i < argc-1) strcat(string, " ");
27: string_so _far = string;

28: }

29: printf("You entered: %\n", string);

Figure 9. hel | 0 program with dynamic memory allocation

4.1.3 Memory Leaks

Memory leaks can be extremely difficult to detect because they can take days of
continuous execution to cause a failure. Small leaks in low level routines can mean that
the function might be called thousands or even millions of times before it loses enough
memory to crash the system. This is exactly the type of subtle bug that survives in-house

13



i ParaSoft
insure+-+

testing only to show up when a customer uses the program for some enormous
processing task.

A memory leak occurs when a piece of dynamically allocated memory can no longer be
freed because the program no longer contains any pointers to that block. A ssimple
example of this behavior can be seen by running the (corretted) ©” program with
the arguments:

hello this is a test

If we examine the state of the program just prior to execution of line 27 (Figure 9), we
find:

e The variablest ri ng_so_f ar points to the stringifel | 0”, which it was
assigned as a result of the previous loop iteration.

* The variablest r i ng points to the extended stringél | o t hi s”, which was
assigned on this loop iteration.

These assignments are shown schematically in Figure 10 - both variables point to
different blocks of dynamically allocated memory.

string @———» hjle|l |l |0 t|h|i]|s]|\0

string_so_far @———» hje|l |l |0o]|\0

Figure 10. Pointer assignments before the memory leak

But when line 27 is executed,
string_so_far = string;

both variables are made to point to the longer memory block, as shown in Figure 11.

14



i ParaSoft
insure+-+

string @——»
string_so_far @——»

hifel|ll |l |o]|\O

Figure 11. Pointer assighnments after the memory leak

Once this has happened, there is no remaining pointer that points to the shorter block.

Thereis now no way that the memory that was previously pointed to by

string_so_far canbereclamed; itispermanently alocated. When this program is
compiled and run with Insure++, a “memory leak” error is reported, as shown in Figure
12.

[hello.c:27] **LEAK ASSI G\**
>> string_so_far = string;

Menmory | eaked due to reassignnent: string

Lost bl ock: 0x0001f bb0O thru 0x0001fbb6 (7 bytes)
string, allocated at hello.c, 17
Stack trace where the error occurred:
mai n() hello.c, 27

Figure 12. Insure++ error report for memory leak in hel | 0 program

Since this error is caused when a pointer is re-assigned, it is kndviaAKs ASSI GN
in Insure++. Other types of memory leaks detected by Insure++ include:

 LEAK FREE: Occurs when you free a block of memory that contains pointers to
other memory blocks. If no other pointers point to these secondary blocks, they
are permanently lost and will be reported by Insure++.

* LEAK RETURN: Occurs when a function returns a pointer to an allocated block
of memory but the returned value is ignored in the calling routine.

 LEAK SCOPE: Occurs when a function contains a local variable that points to a
block of memory but the function returns without saving the pointer in a global
variable or passing it back to its caller.

4.1.4 Dynamic Memory Manipulation

With dynamically allocated memory, programs often continue running after a
programming error corrupts the memory; sometimes they don’t crash at all. One
common mistake is trying to reuse a pointer after it has alreadyf besd. This
“dangling pointer” problem often goes unnoticed, because many machines and
compilers allow this particular behavior.

15



i ParaSoft
insure+-+

In addition to dangling pointers, Insure++ detects many other dynamic memory bugs
including:

* Freeing the same memory block multiple times.
« Attempting to delete or free statically allocated memory.
* Freeing stack memory (local variables).

» Passing a pointer el et e orf r ee that doesn’t point to the start of a memory
block.

» Calls todel et e orf r ee with NULL or uninitialized pointers.

« Passing nonsensical arguments or arguments of the wrong datarnygbée tuc,
call oc,real |l oc orfree.

* Mismatch between calls tvew [ ] anddel ete [].

e Mixing calls betweemal | oc, new, f r ee, anddel et e. For example,
obtaining a pointer witimal | oc and freeing it witldel et e.

* Problems with overloadingew anddel et e operators.

Insure++ also helps uncover dynamic memory problems through its

RETURN_FAI LURE error code. For example, Insure++ does not normally issue an error
message ifral | oc, returns aNULL pointer because it is out of memory. This behavior
is the default because it is assumed that the user program is already checking for and
handling this case. However, if your program appears to be failing for this reason, you
can enable thBETURN_FAI LURE error message class. Insure++ will then print a
message whenever a system call fails.

The program in Figure 13 has an error in calling opeobret e at line 34. Thaew
operator at line 29 allocated an array of class obfaatst . The array is deallocated
with thedel et e operator. However, theel et e operator is not called with] , so it
doesn’t call the destructor for the store class for each element of thé arrsly. This
type of behavior can lead to serious problems in C++ programs.

16



i ParaSoft
insure+-+

1: #include <iostream h>
2: #include <stdlib. h>
3: #include <string. h>
4: #define SIZE 128
5:
6: class store{
7: public:
8: store(int sz=24){size = sz;}
9: ~store(){size=0; cout << “Deleting:” << ptr ;}
10: int copy(char *src){
11: int len;
12:
13: len = strlen(src);
14: if(len > size)return(0);
15: strcpy(ptr,src);
16: return(len);
17: }
18: protected:
19: char ptr[SIZE];
20: int size;
21}
22:
23: main()
24 {
25: class store *first;
26: int limit=5,i;
27: char local[128];
28:
29: first = new store[limit];
30: for(i=0;i<limit;i++){
31: sprintf(local,”"Element %d\n”,i);
32: first[i].copy(local);
33: }
34: delete first;
35:}

Figure 13. Program with error in del et e

When this program is compiled and run with Insure++, a “delete mismatch” error is
reported, as shown in Figure 14.

[ bracket. C: 33] **DELETE_M SMATCH**
>> delete first;
I nconsi stent usage of delete operator: first
array deleted without []
Stack trace where the error occurred:
mai n() bracket.C, 33

Figure 14. Insure++ error report for del et e[ |

17



i ParaSoft
insure+-+

4.1.5 Strings

Though the standard C library string handling functions are useful, unfortunately they
are also arich source of potential errors. They do very little checking on the bounds of
the objects being manipulated. Insure++ detects most string-related problems such as

overwriting the end of a buffer and using strings without null terminators.

4.2 Programming and Third-Party Library Interface Errors

Like memory reference errors, programming errors act as land minesin the program.
When executed, programs containing them encounter problems ranging from incorrect
values to system crashes. Third-party errors are particularly tricky to handle. When a
program crashes in the third-party code, it might be because either the library was
passed incorrect parameters by the user or there is an actual bug in the third-party code.
Programming errors, and library interface errorsin particular, can also cause difficulties
porting code across platforms due to architectural idiosyncrasies.

Insuret++ is able to discover both of these types of problems and provide diagnostics
about which of the problems occurred. Providing this type of information is critical
because source code for the third-party library is generaly not available, and it is not
enough just to say that the bug occurred in thelibrary. If the bug in the third-party library
was caused by passing incorrect parameters, you can easily remedy it. But if thebugis
caused by afault in the library, then all that can be doneisreport it to the vendor.

Insure++ can discover bugsin the third-party library even if the source code to the
library is not available. The bugs are discovered by the code that Insure++ links to the
application. When the third-party library executes, the Insure++ library checks the code
in the third-party library for memory overwrites, dynamic memory problems, and more.

4.2.1 Data Representation and Variable Declaration Problems

Many programs make either explicit or implicit assumptions about the various data
types on which they operate. On many workstations, pointers and integers have the same
number of bytes. While some of these problems can be detected during compilation,
some codes go to great lengths to hide these problems with typecasts such as:

char *p;
int ip;
ip = (int)p;

On many systems, this type of operation isvalid and causes no problems. However,

problems can arise when this code is ported to other architectures. For example, the code
shown above will fail when executed on a PC (16-bit integer, 32-bit pointer) or a 64-bit
architecture such as DEC TruUnix64 (32-bit integer, 64-bit pointer). In cases where the

18



i ParaSoft
insure+-+

operation loses information, Insure++ will report an error. On machines for which the
data types have the same number of bits, no error is reported.

Insure++ also detects inconsistent declarations of variables between source files. For
example, an object might be declared as an array in onefile, but as a pointer in another.
Insure++ reports size differences so that an array declared as one size in one file and
another in a second will be detected.

4.2.2 1/0 Statements

Theprintf andscanf family of functions are easy places to make mistakes which

show up either as bugs or portability problems. For instance, data input into a variable
with datatype doubl e will beincorrect when the format specified in the call to scanf
isdifferent (for example, f | oat).

In addition to checking pri nt f and scanf arguments, Insure++ also detects errorsin
other 1/0 statements. The code

foo(line)

char 1ine[80];
{

gets(line);
}

works as long as the input supplied by the user is shorter than 80 characters, but fails on
longer input. Insuret++ checks for this case and reports an error if necessary.

4.2.3 Mismatched Arguments

Calling functions with incorrect arguments is a common and often overlooked problem
in many programs. Insure++ automatically detects the argument mismatches described
below.

Sign errors: Arguments agree in type but one is signed and the other unsigned,
e.g.,i nt vs.unsi gned int.

Compatible types. The arguments are different data types which happen to
occupy the same amount of memory on the current machinené.gs.l ong,
if both are thirty-two bits. While this error may not cause problems on your
current machine, it is a portability problem.

Incompatibletypes: Data types are fundamentally different or require different
amounts of memory.nt vs.l ong would appear in this category on machines
where they require different numbers of bits.

Aliaserrors: If you uset ypedef to define new names for data types, Insure++
generates an error when you use them inconsistently.

19



i ParaSoft
insure+-+

4.2.4 Invalid Parameters in System Calls

Interfacing to library software is often tricky because passing an incorrect argument to a
routine might cause it to fail inconsistently. Debugging such problems is much harder
than correcting your own code since you typically have much less information about
how the library routine should work. Insure++ has built-in knowledge of alarge number
of system calls and checks the arguments to ensure correct data type and, if appropriate,
range. For example, the code

myr ewi nd(f p)
FILE *fp
{

}

fseek(fp, (long)0, 3);

will cause an error, since the last argument passed to the f seek function is outside the
legal range.

Insure++ includes built-in interface tests for hundreds of libraries. You can construct
additional interface checks easily with Insure++’s interface definition features.

4.2.5 Unexpected Errors in System Calls

Checking return codes from system calls and dealing correctly with all the possible error
cases that can arise is very difficult. Exhaustive testing of all the possible combinations
Is almost impossible. As a result, programs can fail unexpectedly because some system
call fails in a way that had not been anticipated. The consequences can range from a
“core dump” to an infrequent, unrepeatable error.

Insure++ has a special error cld88TURN_FAIl LURE, that detects these problems. All
system calls known to Insure++ contain special error checking code that detects failures.
Normally, these errors are suppressed since it is assumed that the application is handling
them itself, but they can be enabled at runtime. RERURN FAI LURE enabled

Insure++ detectsrrors insystem calls. It prints the routine name, arguments, and an

error description for the following errors:

 mal | oc runs out of memory.

* Files which don't exist.

* Incorrectly set permission flags.

* Incorrect use of 1/O routines.

* Exceeding the limit on open files.

* Interprocess communication and shared memory errors.

* Unexpected “interrupted system call” errors.

20



i ParaSoft
insure+-+

Insuret++ understands standard UNIX and Windows system calls, the X Window
System, Motif, and many other popular libraries.

4.3 Errors Specific to C++

Insure++ uncovers a number of errors specific to the C++ language, including memory
alocation conflicts and inconsistent usage of the delete operator.

4.3.1 Inconsistent Usage of Delete Operator

The current version of ANSI C++ distinguishes between memory allocated with new
andnew ] . A del et e call must (according to the standard) match the newcall, i.e.
whether or not it has[ ] . Callingnew{ ] and del et e might cause the compiler to not
call the destructor on each element of the array, which can lead to serious errors. Even
worsg, if the memory was allocated differently, memory may be corrupted. Thisis
definitely poor practice and unlikely to work with future releases of the specific
compiler.

The code in Figure 15 shows a block of memory alocated with new{ | and freed with
del et e, without [ ] .

1: /*

2: * File: delmsl.cpp

3: */

4.

5: int main() {

6: int *a =newint [5];
7: del ete a;

8: return O

9:

Figure 15. Program del mi s1. cpp

When this program is compiled and run with Insure++, a “delete mismatch” error is
reported, as show in Figure 16.

[del mi s1. cpp: 7] **DELETE_M SMATCH**
>> del ete a;

I nconsi stent usage of delete operator: a
array deleted without []
a, allocated at:

mai n() delnisl.cpp, 6

Stack trace where the error occurred:
mai n() delnmisl.cpp, 7

Figure 16. Insure++ error report for del m s1. cpp

21



i ParaSoft
insure+-+

4.3.2 Memory Allocation

Thiserror is generated when a memory block is allocated withnew (mal | oc) and
freedwithfree (del et e) . Insure++ distinguishes between two possible causes of
this problem.

* badfree: Memory was allocated withewornew{ ] and an attempt was
made to free it witt r ee.

* baddel et e: Memory was allocated witlmal | oc and an attempt was made to
free it withdel et e ordel et e[ ] .

Some compilers allow this, but it is not a good programming practice and might cause a
problem with portability.

The code in Figure 17 shows a typical example of this error, allocating a block of
memory withmal | oc and then freeing it withel et e.

1: /*

2: * File: alloc2.cpp
3: */

4. #i ncl ude <stdlib. h>
5:

6: int main() {

7. char *a

8:

9: a = (char *) malloc(1);
10: del ete a;
11: return O;
12: }

Figure 17. Program with error in allocating memory

When this program is compiled and run with Insure++, a “memory allocation conflict”
error is reported, as show in Figure 18.

[al |l oc2. cpp: 10] **ALLOC CONFLI CT**
>> delete a;

Mermory al l ocation conflict: a

del ete operator used to deal |l ocate menory not
al | ocated by new
bl ock allocated at:
mal | oc() (i nterface)
mai n()al l oc2. cpp, 9

Stack trace where the error occurred:
mai n() al | oc2. cpp, 10

Figure 18. Insure++ error report for al | oc2. cpp

22



i ParaSoft
insure+-+

5. Conclusion

Even programs that compile, produce correct results, and have alarge commercial
distribution can contain elusive errors such as memory references and memory leaks.
Insure++ can detect these errors during development and prevent them from holding up
aproject, or appearing at a user site.

6. Availability

Insuret+ is available now at http://www.parasoft.com. To learn more about how
Insure++ and other ParaSoft development tools can help your department prevent and
detect errors, talk to a Software Quality Specialist today at 1-888-305-0041 (U.S.A.
only), or visit http://www.parasoft.com.

6.1 Platforms

Insure++ is available for the following platforms (64-bit support is available on selected
platforms).

* Windows NT/2000
e UNIX, including: DEC (Alpha 4.x, TruUnix64 5), HP (HPUX 10.x & 11.x),
IBM (AIX 4.3.x), Linux (glibc 2.2.4 or higher), SGI (Irix 6.5), Solaris/Sparc (7,
8), and Solaris x86 (7, 8)
6.2 Compiler Compatibility

Insure++ works with all popular compilers.

* Windows: integrates into Visual C++ 6.0.
e UNIX: compilers includeCC, gcc, andHP C++.

Insure++ can also check modules written in languages other than C++, such as Fortran,
Ada, Pascal, etc.

23



7. Contacting ParaSoft

USA

2031 S. Myrtle Ave.
Monrovia, CA 91016

Tel: (888) 305-0041 (toll-free)
(626) 305-0041

Fax: (626) 305-3036

E-mail: info@parasoft.com
URL: www.parasoft.com

Europe

France: Tel: (33 1) 64 89 26 00
UK: Tel: +44 (020) 8263 2827
Germany: Tdl: (49) 7805/9569 -60
Mail: info-europe@parasoft.com

24

i ParaSoft
insure+-+



	1. Introduction
	2. How Insure++ Works
	2.1 Chaperon
	2.2 Source Code Instrumentation
	2.2.1 Mutation Testing
	2.2.2 Runtime Pointer Tracking

	2.3 Additional Features
	2.3.1 Coverage Analysis with TCA
	2.3.2 Memory Optimization with Inuse
	2.3.3 Threads


	3. How to Use Insure++
	3.1 Using Chaperon
	3.2 Using Source Code Instrumentation

	4. What Insure++ Finds
	4.1 Memory Reference Errors
	4.1.1 Memory Corruption
	4.1.2 Pointer Abuse
	4.1.3 Memory Leaks
	4.1.4 Dynamic Memory Manipulation
	4.1.5 Strings

	4.2 Programming and Third-Party Library Interface Errors
	4.2.1 Data Representation and Variable Declaration Problems
	4.2.2 I/O Statements
	4.2.3 Mismatched Arguments
	4.2.4 Invalid Parameters in System Calls
	4.2.5 Unexpected Errors in System Calls

	4.3 Errors Specific to C++
	4.3.1 Inconsistent Usage of Delete Operator
	4.3.2 Memory Allocation


	5. Conclusion
	6. Availability
	6.1 Platforms
	6.2 Compiler Compatibility

	7. Contacting ParaSoft

