
Dramatically Improving
C and C++ Application

Quality With Unit Testing

ch a
elop-
g.

en-
+

it test-
nit

s of
of C/

ding

eter-
n;
-

d pri-
tly
ll
r

vel-
tion,

ime

he
Introduction

If you do not perform unit testing you are sacrificing a prime opportunity to simulta-
neously improve application quality and slash development time and cost. While su
sacrifice is not desirable, it is certainly understandable... at least for C and C++ dev
ers. Until now, C/C++ developers have not had a feasible way to perform unit testin
While JavaTM developers could automate unit testing with ParaSoft’s Jtest®, C/C++
developers had to perform unit testing manually, which is both difficult and labor-int
sive. Now the release of C++TestTM, an automatic C/C++ unit testing tool, makes C/C+
unit testing as fast and easy as Jtest has made Java unit testing.

This paper explores the process, advantages, and disadvantages of performing un
ing, then describes how C++Test can offer C/C++ developers all of the benefits of u
testing without submitting them to any of the drawbacks.

What is Unit Testing?

We define unit testing as testing the smallest possible unit of an application; in term
C and C++, unit testing involves testing a class as soon as it is compiled. The goal
C++ unit testing should be to exercise every method or function of every class and
detect all existing functionality problems, errors, and construction weaknesses. Fin
such problems typically involves three types of testing: black-box testing, white-box
testing, and regression testing. Black-box testing checks a class’s functionality by d
mining whether or not the class’s public interface performs according to specificatio
this type of testing is performed without knowledge of implementation details. White
box testing checks that all of a class’s methods or functions (including protected an
vate methods or functions) are robust by determining if the class performs incorrec
when it encounters unexpected input; this type of testing must be performed with fu
knowledge of the class’s implementation details. Regression testing checks whethe
class modifications have introduced errors into previously correct code.

What Are the Advantages of Unit Testing?

Unit testing is universally recognized as an essential component of the software de
opment process. Unit testing practitioners enjoy such benefits as easier error detec
which has the very desirable end result of increasing software quality at the same t
that it reduces development time and cost.

The first way that unit testing facilitates error detection is by bringing you closer to t
errors. Figures 1 and 2 demonstrate how unit testing does this.
1

tiple
are

how

cts
d-

nd
with
an
ach

ted

n
diffi-
om-
Figure 1 shows a model of testing an application containing many instances of mul
objects. The application is represented by the large oval, and the objects it contains
represented by the smaller ovals. External arrows indicate inputs. Starred regions s
potential errors.

To find errors in this model, you need to modify inputs so interactions between obje
will force the object to hit the potential errors. This is incredibly difficult. Imagine stan
ing at a pool table with a set of billiard balls in a triangle at the middle of the table, a
having to use a cue ball to move the triangle’s center ball into a particular pocket—
one stroke. This is how difficult it can be to design an input that finds an error within
application. As a result, developers that rely only on application testing may never re
many of the classes, let alone uncover the errors that they contain.

Testing at the unit level offers a more effective way to find errors. This is demonstra
by Figure 2.

As Figure 2 illustrates, when you test one object apart from all other objects, you ca
reach potential errors much easier because you are much closer to the errors. The
culty of reaching the potential errors when the class is tested as an isolated unit is c

Figure 1: Application Testing

Figure 2: Unit Testing
2

e

m
r
and

rob-
ge
and
ult: a

ted

to

e

e

d

pec-
to
ns

sn’t
piles

g is
e
of
hy
parable to the difficulty of hitting one billiard ball into a particular pocket with a singl
stroke.

The second way that unit testing facilitates error detection is by preventing bugs fro
spawning more bugs, which relieves you from having to wade through problem afte
problem to remedy what began as a single, simple error. Because bugs build upon
interact with one another, if you leave a bug in your code, chances are it will lead to
additional bugs. If you delay testing until the later stages of development, you will p
ably have to fix more bugs, spend more time finding and fixing each bug, and chan
more code in order to remove each bug. If you test as you go, it will be easier to find
fix each bug and you'll minimize the chances of bugs spawning more bugs. The res
significant reduction in debugging time and cost.

Study after study confirms that the time and cost involved in finding software errors
rises dramatically the later a problem is detected. Consider the following data repor
by Watts Humphrey:

• IBM: An unpublished IBM rule of thumb for the relative costs to identify soft-
ware defects: during design, 1.5; prior to coding, 1; during coding, 1.5; prior
test, 10; during test, 60; in field use, 100.

• TRW: The relative times to identify defects: during requirements, 1; during
design, 3 to 6; during coding 10; in development test, 15 to 40; in acceptanc
test, 30 to 70; during operation, 40 to 1000 [Boehm 81].

• IBM: The relative time to identify defects: during design review, 1; during cod
inspections, 20; during machine test, 82 [Remus].

• JPL: Bush reports an average cost per defect: $90 to $120 in inspections an
$10,000 in test [Bush].

• Freedman and Weinberg: They report that projects that used review and ins
tions had a ten-fold reduction in the number of defects found in test and 50%
80% reductions in test costs, including the costs of the reviews and inspectio
[Freedman].

What Are the Disadvantages of Unit Testing?

Based on the above information, unit testing sounds like a panacea. If so, why doe
every C/C++ developer perform unit testing on every class as soon as he or she com
it? When performed using the currently available technologies for C/C++, unit testin
difficult, tedious, and time-consuming; until now, C and C++ developers did not hav
access to tools that could automate enough of the process to make it a component
tight development schedules. A brief look at what is involved in unit testing reveals w
so many C and C++ developers shy away from unit testing.
3

o

nced

other
ld

hat
ed to
to
test,

est

and
s that
reat-

tional-

y test
:

at
prefer-
ddi-
r any

with
e
write
The first step in performing unit testing is making the class testable. This requires tw
main actions:

• Designing a harness that will run the class.

• Designing stubs that return values for any external resources that are refere
by the class under test, but that are not available or accessible.

Creating a harness involves creating a new class that cannot be used for anything
than testing the original class. According to Hunt and Thomas, test harnesses shou
include the following features:

• A standard way to specify setup and cleanup.

• A method for selecting individual tests or all available tests.

• A means of analyzing output for expected (or unexpected) results.

• A standard form of failure reporting.

In order to test the class thoroughly and accurately, you need to design a harness t
fully exercises the class under test; several modifications or rewrites may be requir
create such a harness. Once the harness is created, you must examine it carefully
ensure that it does not contain any errors. An error in the harness can sabotage the
but because you cannot test a class in isolation (the original problem), you cannot t
the harness either.

If your class references any external resources (such as external files, databases,
CORBA objects) that are not yet available or accessible, you must then create stub
return values similar to those that the actual external resource could return. When c
ing these stubs, you need to choose stub return values that will test the class's func
ity and provide thorough coverage of the class.

The next step is designing and building appropriate test cases. In order to thoroughl
the class’s construction and functionality, you should design two types of test cases
black-box and white-box.

Black-box test cases should be based on the specification document. Specifically,
least one test case should be created for each entry in the specification document;
ably, these test cases should test the various boundary conditions for each entry. A
tional black-box test cases should be added for each error that is uncovered, and fo
other tests that you deem necessary.

White-box test cases should uncover defects by fully exercising the class’s methods
a wide variety of inputs. However, this is incredibly difficult to do manually. To creat
effective white-box test cases, you must examine the class’s internal structure, then
4

r
for
. For
ible
.

yze the
gauge
addi-

that
ion
dur-

st-
uto-
nit

rn val-

on.

.

s,
OM
test cases that will cover all of the class’s methods as fully as possible, and uncove
inputs that will cause the class to crash. Achieving the scope of coverage required
effective white-box testing mandates that a significant number of paths are executed
example, in a typical 10,000 line program, there are approximately 100 million poss
paths; manually generating input that would exercise all of those paths is infeasible

After these test cases are created, you should execute the entire test suite and anal
results to determine where errors, crashes, and weaknesses occur. You should also
coverage to determine how thoroughly the class was tested and to determine what
tional test cases are necessary.

Any time that the class is modified, you should perform regression testing to ensure
no new errors were introduced and/or that previous errors were corrected. Regress
testing involves running the same white-box and black-box test cases that were run
ing the initial test, and analyzing results to determine whether or not changes have
caused this class’s quality to regress.

C++Test: An Automatic Unit Testing Solution

Because ParaSoft recognized both the value and difficulty inherent in C/C++ unit te
ing, we added C++Test, an automatic unit testing tool for C and C++, to our line of a
matic error prevention and error detection tools. C++Test automates every part of u
testing that can possibly be automated. Specifically, it automatically:

• Builds a harness for each class that it tests.

• Creates any necessary stubs, and allows you to customize these stubs’ retu
ues or enter your own stubs.

• Performs all steps involved in white-box testing with the single click of a butt

• Generates test cases that can be used as a base set of black-box test cases

• Runs black-box test cases.

• Generates outcomes for black-box inputs.

• Performs regression testing.

• Tracks test coverage.

C++Test tests all types of C and C++ projects; C++Test even supports COM object
allowing you to perform automatic unit testing on classes and methods that call to C
object methods.
5

n
t any

ess.
you

a

n the
ual
vel-
C++Test is also highly customizable; for example, you can alter test case generatio
parameters, prevent certain files, classes, or methods from being tested, and test a
level from a project to a single method or test case.

In addition, C++Test can easily be incorporated into your existing development proc
C++Test installs directly into DevStudio so that you can instantly test any class that
are working on. Just click theTest File or Test Project button in the Developer Studio
tool bar, then C++Test will automatically open your file(s) in the C++Test GUI, build
harness for each class, and automatically test each class.

By automating the unit testing process, C++Test makes unit testing feasible for eve
most time-starved developers and affords greater precision and accuracy than man
unit testing. This translates to higher quality applications, in less time, with lower de
opment, support, and maintenance costs.

Figure 3: C++Test GUI
6

erage
ss,

test
ns

es.
val-

an
What Does C++Test Do?
I. Build a Harness and Generate Stubs
C++Test automatically builds a test harness that is designed to maximize class cov
and error detection. To build a harness for a class, you simply have to open the cla
then click theBuild Test button. C++Test will then automatically create a harness for
the class.

In addition, C++Test automatically generates stub functions when a method under
calls a function that is not available or accessible; this allows it to test that interactio
with external resources operate correctly and do not contain any hidden weakness
Rather than actually calling the function, C++Test calls the stub and uses the return
ues that the stub provides. If you want to control what return values are used, you c
create a stub table that specifies input/outcome correlations.

Figure 4: Creating a Stub Table
7

unc-
v-

s
user
hen
ma-
ld

est

est the
ple
easily

when
he con-
class

ecute
You can also enter user-defined stubs (for example, if you want to use the original f
tion and this function is defined in a different file, or if you want to simulate the beha
ior of the original function by replacing the original function with a simplified one).

This ability to automatically generate harnesses and stubs for C/C++ classes allow
C++Test to test C/C++ classes as soon as they are compiled, without requiring any
intervention. This lets you automatically detect coding errors as soon as possible, w
they are the easiest, cheapest, and fastest to pinpoint and repair. Without such auto
tion, unit testing would likely be sacrificed because of the time and resources it wou
consume, and all potential benefits of unit testing would be lost.

II. White-Box Testing

C++Test provides an effective and efficient way to perform white-box testing. C++T
completely automates all phases of white-box testing; with the click of a button,
C++Test automatically generates and executes test cases designed to thoroughly t
specified class. Any crashes found are automatically flagged and presented in a sim
graphical structure. These test cases are then automatically saved so that they can
be used for regression testing.

Because C++Test automatically generates stubs (or lets you enter your own stubs)
classes reference unavailable or inaccessible external resources, it can even test t
struction of classes that reference external objects. In other words, you can run any
or set of classes through C++Test, and C++Test will automatically generate and ex
a sophisticated set of test cases designed to uncover as many defects as possible.

Figure 5: Entering User-Defined Stubs
8

evel

sses
box

and
tion
This
t

C++Test lets you customize how white-box test cases are generated, and at what l
the test is performed (project, file, class, or method).

III. Black-Box Testing

C++Test reduces the burden of black-box testing by automating many of the proce
involved in this type of testing. C++Test partially automates the first phase of black-
testing— building test cases— in two ways:

1. By relieving you from having to enter the outcome for each test case.

You can simply enter test case inputs, then have C++Test run the test cases
automatically determine the actual outcomes. If an outcome is correct, no ac
is required. If an outcome is incorrect, you can enter the expected outcome.
is much faster and easier than manually entering the outcomes for every tes
case.

Figure 6: Performing Automatic White-Box Testing
9

ms
eed
ect

val-
ntly

ite,
f a

est
come
ted

g.
n you

ck-
2. By automatically generating a core set of test cases.

C++Test automatically designs a wide spectrum of test cases when it perfor
white-box testing. To use these test cases for black-box testing, you simply n
to look at the actual outcomes, then enter the expected values for any incorr
outcomes.

When entering or modifying test cases, you have the convenience of simply typing
ues into the test case skeleton that C++Test generates automatically. This significa
speeds up the tedious process of entering test case after test case.

In addition to automating many of the steps involved in building a black-box test su
C++Test fully automates the subsequent steps of black-box testing. With the click o
button, you can run tests at the project, file, class, or method level, or run a single t
case. C++Test then automatically executes all of the test cases, reports all input/out
correlations, and flags any test cases whose actual outcome differs from the expec
outcome or that result in a crash.

III. Regression Testing

C++Test completely automates all steps involved in and related to regression testin
The first time that C++Test tests a class, it saves the tests and test parameters. Whe
are ready to perform regression testing, you can run all previous white-box and bla
box test cases by opening the appropriate project or file(s) and clicking a button;

Figure 7: Entering a Test Case
10

st

for-
cally

e cov-
ere

ly

efit

com-
ally
h

C++Test then automatically runs the exact same test cases, with the exact same te
parameters, and alerts you to any problems that it finds. This means that you can
instantly tell whether or not modifications introduced any errors.

IV. Coverage Monitoring

To help you gauge the effectiveness of your current test suite and to give you the in
mation that you need to achieve the greatest possible coverage, C++Test automati
monitors test coverage.

C++Test tracks coverage in real-time, then creates a summary coverage report. Th
erage window graphically specifies the line currently being executed, the lines that w
already executed, and the number of times each line was executed. Thus, it not on
indicates whether or not a line has been tested, but also how thoroughly it has been
tested. This information is helpful in determining what areas of the code would ben
from additional testing.

V. Single-Stepping With a Debugger

C++Test also makes it easy to single-step through a method as soon as its class is
piled; if you choose to attach a debugger to a method’s test, C++Test will automatic
launch the Microsoft Visual C++ debugger so that you can easily single-step throug
any method that you are testing in C++Test.

Figure 8: Viewing Test Coverage

Line that was
already covered

Number of times
line was executed

Line currently
being executed
11

ility
Wiz-
at it
VI. Error Prevention

You can prevent errors by using ParaSoft’s CodeWizard® to automatically enforce indus-
try-wide and custom static coding standards— rules designed to reduce the possib
of introducing errors, as well as increase code portability and maintainability. Code
ard integrates seamlessly with C++Test: C++Test can automatically run every file th
builds though CodeWizard, then report coding standard violations found within the
C++Test GUI.

For more information on CodeWizard, see our “Preventing Errors in C/C++” paper.

Figure 9: Preventing Errors With CodeWizard
12

vel.
to-

a
rrors

ity

t
ld
pers
med

ut did
ility
ent
VII. Runtime Error Detection

C++Test can also help you perform automatic runtime error detection at the class le
If ParaSoft’s Insure++® is installed on your system, C++Test can be configured to au
matically run classes and methods through Insure++ as they are being tested by
C++Test. You will then be alerted to the following types of errors in your classes:

• Memory corruption/uninitialized memory

• Memory leaks

• Memory allocation errors

• Variable definition conflicts

• I/O errors

• Pointer errors

• Library errors

• Logic errors

• Algorithmic errors

This means that you can automatically perform thorough runtime error detection on
class as soon as it is compiled. Like construction and specification errors, runtime e
can then be fixed at the point where it is easiest, fastest, and cheapest to do so.

For more information on Insure++, see our “Insure++: A Tool to Support Total Qual
Software” paper.

Conclusion

By performing unit testing, you can prevent many errors from ever occurring, detec
existing errors as early as possible, and detect errors more effectively than you cou
with other testing techniques and technologies. The main barrier preventing develo
from performing C/C++ unit testing has been the time and resources that are consu
by performing unit testing with the currently available tools. This barrier is removed
with the release of C++Test. C++Test does what developers always wanted to do, b
not believe could be done: automate C/C++ unit testing. C++Test’s revolutionary ab
to automate the C/C++ unit testing process makes it an incredibly powerful developm
tool that belongs in every serious developer’s tool set.
13

how
and
Availability

C++Test is available now at www.parasoft.com/products/ctest. To learn more about
C++Test and other ParaSoft development tools can help your department prevent
detect errors, talk to a Software Quality Specialist today at 1-888-305-0041, or visit
www.parasoft.com.

Contacting ParaSoft

USA

2031 S. Myrtle Ave.

Monrovia, CA 91016

Toll Free: (888) 305-0041

Tel: (626)305-0041

Fax: (626) 305-3036

Email: info@parasoft.com

URL: www.parasoft.com

Europe

France: Tel: +33 1 64 89 26 00

UK: Tel: +44 171 288 66 00

Germany: Tel: +49 (0) 78 05 95 69 60

Email: info-europe@parasoft.com

References

W. Humphrey.A Discipline for Software Engineering. Reading, MA: Addison Wesley,
1995.

A. Hunt and D. Thomas.The Pragmatic Programmer. Reading, MA: Addison Wesley,
2000.

Last Updated 4/27/01
14

	Introduction
	What is Unit Testing?
	What Are the Advantages of Unit Testing?
	What Are the Disadvantages of Unit Testing?
	C++Test: An Automatic Unit Testing Solution
	What Does C++Test Do?
	Conclusion
	Availability
	Contacting ParaSoft
	References

