
Strategies for
Preventing and
Detecting Errors in
Embedded Software
Development

n

on
. This

tware

wer
o
t tools
for
y of
devel-
of this

pment.
diffi-

ically
p
ols

u
ing
are

he

erally
are.

ies,
ts,
e

ndards
bed-
h-
Introduction

As every embedded software developer knows, it is extremely difficult to find and fix errors i
embedded software.

One reason that debugging embedded software is so difficult is that code is typically written
the host machine, then cannot be executed or tested until it is transferred to the target system
means that most traditional software testing techniques cannot be applied to embedded sof
development.

Another reason for this difficulty is that embedded software developers have considerably fe
development tools at their disposal than other software developers-- not because there is n
demand for such tools, but rather because it is expensive and difficult to create developmen
for this development sector. Only a relatively small number of developers produce software
embedded systems, and those who do develop embedded software work with a wide variet
target devices. As a result, this development sector is composed of a very small number of
opers who are spread out across multiple targets and compilers. The size and fragmentation
sector discourage development tool companies from supporting embedded software develo
Developing for such a small, fragmented market is not cost-effective: development tools are
cult to build and port, so they typically only cater to the largest development sectors.

Consequently, embedded software developers-- developers of software in which there is typ
little room for error-- are left with a monumental debugging task, and few or no tools that hel
them perform this task. We believe that the solution to this dilemma lies in techniques and to
that:

• Prevent as many errors as possible:Every error that was prevented is an error that yo
do not need to find and fix, and an error that has no chance of eluding testing and be
shipped with the system. These benefits are especially important to embedded softw
developers because of the difficulty involved in debugging embedded software and t
demand for error-free applications.

• Are general, not target/compiler specific:Software development tools that were
designed to be general (i.e., not compiler/target specific) and easily portable are gen
more beneficial to embedded software developers than compiler/target-specific tools
General development tools tend to contain more advanced error detection technolog
and can be used on a variety of different projects (as developers move to new projec
they do not need to invest time and effort in learning new tools, but rather can leverag
their previous investments).

Research has shown that the two most beneficial error prevention techniques are coding sta
enforcement and unit testing. This paper will describe how these techniques can benefit em
ded software developers and introduce software development tools that automate these tec
niques.
1

as

great-
his is
duced

ly
educ-
force
are
p-
the

ed in
on C
+ and

s:

ts

ct,
n ben-
n-

nt
y

Every
al

.g.,

ems
orce

exam-
Enforcing Coding Standards

The best way to improve the quality of embedded software-- or any software-- is to prevent
many errors as possible from entering the code.

The first step in preventing errors is realizing that bugs can indeed be prevented. One of the
est hurdles in keeping bugs under control is the widely-held belief that bugs are inevitable. T
completely false. Errors don't just appear; every error enters code because a developer intro
a defect into the code. Humans are not flawless, so even the best developer will occasional
introduce defects when given the opportunity to do so. The key to preventing errors is thus r
ing the opportunity for making errors. One of the best ways to do this is to implement and en
coding standards that will prevent errors from occurring in the first place. Coding standards
language-specific “rules” that, if followed, will significantly reduce the opportunity for develo
ers to introduce errors into an application. Coding standards should be enforced as soon as
code is written-- before it is transferred to the target platform-- and they should be implement
all languages. Because most embedded software developers are working in C, we will focus
coding standards, but coding standards are also available for other languages, including C+
Java.

To maximize your error prevention efforts, you should enforce two types of coding standard

• Industry-wide coding standards: Rules that are accepted as “best practices” by exper
in the given language. (For example, “Avoid breaks in for loops”).

• Custom coding standards:Rules that are specific to a certain development team, proje
or even a certain developer. There are three types of custom coding standards that ca
efit embedded software developers: company coding standards, personal coding sta
dards, and target-specific coding standards.

Company coding standards are rules that are specific to your company or developme
team. For example, a rule that enforces a naming convention unique to your compan
would be a company coding standard.

Personal coding standards are rules that help you prevent your most common errors.
time you make an error, you should determine why it occurred, then design a person
coding standard that prevents it from reoccurring. For example, if you found that you
repeatedly use assignment in if statement condition when you should use equality (e
you write if (a=b) when you should writeif (a==b)), you could create and
enforce the following coding standard: “Avoid assignment in if statement condition.”

Target-specific coding standards are rules that flag constructs which will cause probl
on a specific target platform. For example, target-specific coding standards could enf
target-specific restrictions on memory usage or variable length.

The best way to explain what coding standards are and how they work is to show you some
ples. First let’s look at the following C code:
2

This is
ent in
ag-

agni-
C

voided.

he
ed”

e

is-
lt

d by

gram
ss
in an
ns
char *substring (char string[80], int start_pos, int length)
{

.

.

.
}

This code declares the magnitude of a single dimensional array in an argument declaration.
dangerous because the C language will pass an array argument as a pointer to the first elem
the array, and different invocations of the function may pass array arguments with different m
nitudes. If the developer of this code had followed the coding standard “Do not declare the m
tude of a single dimensional array in an argument declaration” (taken from Motorola’s set of
coding standards), the code would read as follows, and these problems would have been a

char *substring (char string[], int start_pos, int length)
{

.

.

.
}

Another coding standard that could help embedded software developers prevent errors is “T
const data type should be used for pointers in function calls if the pointer is not to be chang
(also from Motorola’s C coding standards). Theconst specifier guarantees that the value of th
variable cannot be changed. The compiler will report an error if the value is changed when
const is used. Following this coding standard will prevent you and other developers from m
takenly modifying the value of this variable, and thus prevent errors that may otherwise resu
from attempts to modify the value of this variable.

Here is yet another example of code with potential problems that could have been prevente
enforcing coding standards:

void Foo (int *ptr1, char *ptr2, float *ptrF)
{

*ptr1 = 10; // possibly null pointer dereference
ptr2 = 0;
if(ptrF==0) {

return;
}
*ptrF = 0; // OK
return;

}

This code deferences a possibly null pointer; such dereferencing is a common cause of pro
failure. This problem could have been prevented by enforcing the coding standard “Don't pa
possibly null pointers as parameters.” Violations of this coding standard do not always result
error, but it is much less time-consuming to enforce the coding standard and check if violatio
3

ecific

xam-
d to

lnum,
up-
ss dif-

with a
cre-

ll of
t of
num-

lopers.
try
cod-
will cause a problem than it would be to later trace strange application behavior back to a sp
line of code.

Coding standards can also prevent problems that may not surface until code is ported. For e
ple, the following code may work on some platforms, but problems may arise when it is porte
others:

#include

void test(char c) {
if('a' <= c && c <= 'z') { //Violation
}
if(islower(c)) { //OK
}

while('A' <= c && c <= 'Z') { //Violation
}
while(isupper(c)) { //OK
}

}

The portability problem is caused by character tests that do not use the ctype.h facilities (isa
isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower, to
per). The ctype.h facilities for character tests and upper-lower conversions are portable acro
ferent character code sets, are usually very efficient, and promote international flexibility.

The best way to enforce these and other coding standards is to enforce them automatically,
tool that offers a set of meaningful industry-wide coding standards as well as a way to easily
ate and enforce custom coding standards. The best example of a C tool that incorporates a
these vital features is CodeWizard. CodeWizard automatically enforces a comprehensive se
built-in coding standards that prevent errors in embedded development; it also enforces any
ber of custom coding standards that you develop.

CodeWizard contains a set of coding standards designed specifically for C embedded deve
These coding standards were taken from C gurus as well as embedded development indus
experts. Coding standards included in this special “embedded development” set include the
ing standards discussed above, as well as over 75 additional coding standards such as:

• Avoid breaks in for loops.

• Do not compare chars to constants out of char range.

• Do not check floats for equality; check for greater than or less than.

• Avoid assignment in if statement condition.

• Avoid functions that modify the global variable.

• Avoid constants out of range for the unsigned char type.

• The comma operator shall only be used in for statements and variable declarations.
4

you
an-

deref-
the

ine
stan-
ns or

GUI,
d to
tional
added
tom-
• Do not initialize unsigned integer variables with signed constants.

To enforce coding standards with CodeWizard, you simply need to specify which file or files
want to check, then enter a simple command or click a button. You can also check coding st
dards in the background by integrating CodeWizard into your makefile.

For example, if you wanted to automatically enforce coding standards on the above file that
erences a possibly null pointer, you could simply open the file in a supported IDE, then click
Analyze File button, or you could entercodewizard test1.c at the prompt.

CodeWizard would then analyze the file and report the following violations.

It is easy to customize CodeWizard to suit your development team’s projects and priorities.
CodeWizard divides its coding standards into five severity categories, so it is easy to determ
which coding standards you do and do not want to enforce. Once you decide which coding
dards you want to enforce, you can customize the tool by creating flexible suppression optio
disabling/enabling specific coding standards.

CodeWizard also lets you create custom coding standards. With CodeWizard’s RuleWizard
you can create custom rules by graphically expressing the pattern that you want CodeWizar
look for as it analyzes code. Rules are created by selecting a main “node,” then adding addi
elements until the rule expresses the pattern that you want to check for. Rule elements are
by pointing, clicking, and entering values into dialog boxes. You can also use this tool to cus

Figure 1: Automatically Preventing Errors With CodeWizard
5

t are
or

other
sub-

d cer-
e use
pos-

ves

by
ize many of the built-in coding standards included with CodeWizard. You can write rules tha
applicable to any C/C++ project, or you can create rules that are specific to a certain project
type of project (for example, rules for software designed for a certain type of PDA or smart
phone).

Performing Unit Testing

Often, developers hear about unit testing and think that the term refers to module testing. In
words, developers think that they are performing unit testing when they take a module, or a
program that is part of a larger application, and test it. Module testing is important and shoul
tainly be performed, but it is not the technique that we want to concentrate on here. When w
the term “unit testing,” we are talking about an even lower-level testing--testing the smallest
sible unit of an application while it still sits on the host system; in terms of C, unit testing invol
testing a function as soon as it is compiled.

Unit testing can dramatically improve software quality. Unit testing facilitates error detection
bringing you closer to the errors. Figures 3 and 4 demonstrate how unit testing does this.

Figure 2: Creating Custom Coding Standards With RuleWizard
6

on is
vals.

l
ool
ball

lt it
t rely
ors

gure

ntial
poten-
ing
Figure 3 shows a model of testing an application containing multiple functions. The applicati
represented by the large oval, and the functions it contains are represented by the smaller o
External arrows indicate inputs. Starred regions show potential errors.

To find errors in this model, you need to modify inputs so interactions between functions wil
force the function to hit the potential errors. This is incredibly difficult. Imagine standing at a p
table with a set of billiard balls in a triangle at the middle of the table, and having to use a cue
to move the triangle’s center ball into a particular pocket-- with one stroke. This is how difficu
can be to design an input that finds an error within an application. As a result, developers tha
only on application testing may never reach many of the functions, let alone uncover the err
that they contain.

Testing at the unit level offers a more effective way to find errors. This is demonstrated by Fi
4.

As Figure 4 illustrates, when you test one function apart from the others, you can reach pote
errors much easier because you are much closer to the errors. The difficulty of reaching the
tial errors when the function is tested as an isolated unit is comparable to the difficulty of hitt
one billiard ball into a particular pocket with a single stroke.

Figure 3: Application Testing

Figure 4: Unit Testing
7

100%
t the
when

se
r lev-

ginal
that

ery
tle
n anal-

is not

e
t at the
on-
rrors as
s you
or-

the

r the
nd as

mat-
ey

ing

o 6;
oper-

-

For the same reason, it is also easiest to achieve complete coverage at the unit level. While
coverage at the application level is an unrealistic goal, 100% coverage is indeed possible a
unit level because it is so much easier to design inputs that thoroughly cover each function
you are testing at the unit level.

The second way that unit testing facilitates error detection is by relieving you from having to
wade through problem after problem to remedy what began as a single, simple error. Becau
bugs build upon and interact with one another, pinpointing and remedying one error at highe
els often involves finding one problem after another. When you test at a higher level, your ori
error is like the innermost layer of an onion, and the additional errors are like the many layers
enclose that innermost layer: you can’t even see the innermost layer until you peel away ev
layer that envelops it. When you test every function as soon as it is compiled, errors have lit
chance to build upon one another and interact to cause strange behavior. To extend the onio
ogy, reaching an error at the unit level is as easy as reaching an innermost onion layer that
enveloped by any additional layers.

The most significant effect of this easier error detection is its ability to slash development tim
and cost. There are several reasons why unit testing can reduce development time and cos
same time that it improves application quality. First, because errors are easier to find, you c
sume less time and resources finding them. Second, because you are detecting and fixing e
soon as you have written a function, you do not need to waste time relearning the function, a
would if you had delayed testing until later in the development process. Finally, the most imp
tant reason: because functions interact with and build upon one another, fixing one error at
unit level involves changing only the original function, while fixing one error at a higher level
might mean changing the design and functionality of multiple program components. The late
problem is discovered, the more code must usually be changed in order to repair that error. A
the amount of code changed increases, two other factors also increase:

• The amount of time and money required to fix each error.

• The chance of introducing new errors into the code.

Study after study confirms that the time and cost involved in finding software errors rises dra
ically the later a problem is detected. Consider the following data reported by Watts Humphr
(Humphrey 1995):

• IBM: An unpublished IBM rule of thumb for the relative costs to identify software
defects: during design, 1.5; prior to coding, 1; during coding, 1.5; prior to test, 10; dur
test, 60; in field use, 100.

• TRW: The relative times to identify defects: during requirements, 1; during design, 3 t
during coding, 10; in development test, 15 to 40; in acceptance test, 30 to 70; during
ation, 40 to 1000 [Boehm 81].

• IBM: The relative time to identify defects: during design review, 1; during code inspec
tions, 20; during machine test, 82 [Remus].
8

0 in

had a
test

sting
ing

ts.

e
rom
mall

tion
.
, the

ed to

x test-
ck-
lic
dge
each

When
will
l
n
per-

save
on
g
can
-
ode
• JPL: Bush reports an average cost per defect: $90 to $120 in inspections and $10,00
test [Bush].

• Freedman and Weinberg: They report that projects that used review and inspections
ten-fold reduction in the number of defects found in test and 50% to 80% reductions in
costs, including the costs of the reviews and inspections [Freedman].

Moreover, research has also confirmed that coding errors-- the types of problems that unit te
exposes-- account for a significant portion of the total errors found and of the total cost of fix
errors. Consider this data from Steve McConnell’sCode Complete(McConnell 1993):

• Construction errors account for 45-75 percent of all errors on even the largest projec

• In one study of coding errors on a small project (1000 lines of code), 75 percent of th
defects resulted from coding, compared to 10 percent from analysis and 15 percent f
design. (Jones 1986a). This error breakdown appears to be representative of many s
projects.

• A study of two very large projects at Hewlett-Packard found that the average construc
defect cost 25 to 50 percent as much to fix as the average design error (Grady 1987)
When the greater number of construction defects was figured into the overall equation
total cost to fix construction defects was one to two times as much as the cost attribut
design defects.

Unit testing can be divided into at least two distinct processes. The first process is black-bo
ing, the process of discovering functionality problems. When performed at the unit level, bla
box testing checks a function’s functionality by determining whether or not the function’s pub
interface performs according to specification; this type of testing is performed without knowle
of implementation details. Performing black-box testing at the unit level lets you ensure that
function behaves according to specification-- before one minor functionality problem spurs a
myriad of difficult to find and fix problems.

The second process is white-box testing, the process of discovering construction problems.
performed at the unit level, white-box testing validates that unexpected inputs to a function
not cause the program to crash; this type of testing must be performed by someone with ful
knowledge of the function’s implementation details. By performing white-box testing, you ca
prevent crash-causing errors and ensure that your functions are robust (i.e., your functions
form well even when faced with unexpected inputs).

You can use these two processes as the basis for a third process: regression testing. If you
your black-box and white-box test cases, you can re-run them to perform unit-level regressi
testing and monitor your existing code’s integrity as you modify it. The concept of performin
regression testing at this level is novel. When you perform unit-level regression testing, you
immediately determine if your modifications introduced problems. This way, you can fix prob
lems immediately after you introduce them, and you do not have to wade through layers of c
in order to fix each error that you introduced.
9

ed
als

n

lator

the

than
ng

lly
such

oes
nnot

ORBA
es sim-
ssen-

ting
n

func-
d

ne test
ases
The problem with unit testing is that it is difficult, tedious, and time-consuming when perform
without automatic unit testing technologies. A brief look at what is involved in unit testing reve
why it is difficult-- if not impossible-- to integrate it into today’s development cycles without a
automatic unit testing tool.

The first step in performing unit testing on embedded software is constructing a type of simu
that allows you to execute and test the function on the host system. This requires two main
actions:

• Designing scaffolding that will run the function.

• Designing stubs that return values for any external resources that are referenced by
function under test, but that are not available or accessible.

Creating scaffolding involves creating a new function that cannot be used for anything other
testing the original function. According to Hunt and Thomas (Hunt, Thomas 2000), scaffoldi
should include the following features:

• A standard way to specify setup and cleanup.

• A method for selecting individual tests or all available tests.

• A means of analyzing output for expected (or unexpected) results.

• A standard form of failure reporting.

In order to test the function thoroughly and accurately, you need to design scaffolding that fu
exercises the function under test; several modifications or rewrites may be required to create
scaffolding. Once the scaffolding is created, you must examine it carefully to ensure that it d
not contain any errors. An error in the scaffolding can sabotage the test, but because you ca
test a function in isolation (the original problem), you cannot test the scaffolding either.

If your function references any external resources (such as external files, databases, and C
objects) that are not yet available or accessible, you must then create stubs that return valu
ilar to those that the actual external resources could return. A stub is typically a table which e
tially says, “For this input, return this value, and for that input, return that value.” When crea
these stubs, you need to choose stub return values that will redirect the program’s instructio
pointer:

• In whatever paths must be executed in order to test the function’s functionality.

• In enough directions to provide thorough coverage of the function.

The next step is designing and building appropriate test cases. In order to thoroughly test the
tion’s construction and functionality, you should design two types of test cases: black-box an
white-box.

Black-box test cases should be based on the specification document. Specifically, at least o
case should be created for each entry in the specification document; preferably, these test c
10

mple
ome
ted

iety

ge
l parts
ay

to
n’s
cover
ctive
a typ-
rat-

esults to
f these

erage to
es are

w
res-
s will
ica-

r or
code.
oach
you

ot need
un and
ason-
velop-
should test the various boundary conditions for each entry. You should not just verify that a si
input produces the expected outcome; rather, you should consider what range of input/outc
relationships you need to verify in order to prove that the specified functionality is implemen
correctly, then write test cases that will fully verify that functionality. You may want to test for
omissions as well as faults of commission.

White-box test cases should uncover defects by fully exercising the function with a wide var
of inputs. These test cases should try to do two things:

• Aim for 100% coverage of the function: As we explained earlier, this degree of covera
is possible at the unit level because it is so much easier to design inputs that reach al
of the function when you test a function apart from an application. 100% coverage m
not be possible in all situations, but it is the goal that you should strive for.

• Make the function crash.

However, it is incredibly difficult to create such test cases on your own, without a technology
create them for you. To create effective white-box test cases, you must examine the functio
internal structure, then write test cases that will cover the function as fully as possible and un
inputs that will cause the function to crash. Achieving the scope of coverage required for effe
white-box testing mandates that a significant number of paths are executed. For example, in
ical 10,000 line program, there are approximately 100 million possible paths; manually gene
ing input that would exercise all of those paths is infeasible.

After these test cases are created, you should execute the entire test suite and analyze the r
determine where errors, crashes, and weaknesses occur. You should have a way to run all o
test cases and easily determine which test cases had problems. You should also gauge cov
determine how thoroughly the function was tested and to determine what additional test cas
necessary.

Whenever a function is modified, you should perform regression testing to ensure that no ne
errors were introduced and/or that previous errors were corrected. Integrating unit-level reg
sion testing into your development infrastructure will keep many errors at bay; because error
be detected immediately after they are introduced, they will not be allowed to enter the appl
tion and spawn more errors.

There are two ways you can perform regression testing. The first way is to have a develope
tester examine every test case and determine which test cases are affected by the modified
This approach uses human effort and time to save the computer work. A more efficient appr
is to have a computer automatically run all test cases every time the code is modified. When
take this approach, you can preserve precious and costly developer time because you do n
to have a developer examine the entire test suite to determine which test cases need to be r
which do not. Even if you need to add additional systems to run all of your test cases in a re
able period of time, you will save money: it is always cheaper to add systems than to pay de
ers good money to perform menial tasks.
11

it will
-
on as
he
ystem
are
d

n

unit

g the
Fortunately, there are ways of integrating unit testing into your development process so that
not only improve quality, but also save you significantly more time and resources than it con
sumes. If you are developing in C, you can use C++Test to automate your unit testing. As so
you have written and compiled a function, you can simply run it through C++Test, and with t
click of a button, the tool instantly makes the function executable and testable on the host s
by automatically designing any necessary scaffolding or test stubs that let you test the softw
independent of the hardware. You can then use this tool to perform white-box, black-box, an
regression testing.

To perform white-box testing on a function, you simply tell the tool which function to test, the
click a button. C++Test will then automatically:

• Generate any scaffolding or stubs required for the test.

• Design and execute test cases that will thoroughly test the code’s construction.

• Report errors in an easy-to-read tree structure.

You can then save test parameters and results to facilitate regression testing.

For example, let’s assume that you have written the following C file and are ready to perform
testing on it.

unsigned int max(unsigned int* arr, unsigned int size)
{

unsigned int max_val = 0;
int i;
for (i=0; i <= size; ++i) {

if (max_val < arr[i]) {
max_val = arr[i];

}
}
return max_val;

}

You can make the functions executable and testable, then expose crashes by simply loadin
file into C++Test, then clickingTest All.
12

suite
your
inputs
less.

lues in
When you are ready to perform black-box testing, you can start with the base black-box test
that C++Test creates during white-box testing, then you can expand the test suite by adding
own test cases and customizing tests with user-defined stubs. You can also save black-box
and outcomes with a click of a button; this makes unit-level regression testing virtually effort

For example, you can enter a user-defined test case to the above example file by entering va
the test case skeleton and object editor.

Figure 5: Automatic White-Box Testing with C++Test
13

e fol-
You can then run all or selected test cases with the click of a button. C++Test would report th
lowing results for the above test case.

Figure 6: Entering a User-Defined Test Case in C++Test
14

ndard
-run
l

vel

This
ore
As you find errors, remember to determine the cause of each error, then design a coding sta
that prevents that type of error from reoccurring. You should then fix the errors found, and re
the same tests until all construction and functionality problems are fixed. Code with unit-leve
errors should not be integrated into the application.

If you save your black-box and white-box test cases, you can re-run them to perform unit-le
regression testing and monitor your existing code’s integrity as you modify it.

You can also use C++Test to perform automatic runtime error detection at the function level.
means that you can find the following types of errors as soon as a function is compiled-- bef
your code is transferred to the target device:

• Memory corruption/uninitialized memory

• Memory leaks

• Memory allocation errors

• Variable definition conflicts

• I/O errors

Figure 7: Test Case Results
15

y tell-
g a

ded
ft offer
lied to
r
fferent
easily
iques

s, but
• Pointer errors

• Library errors

• Logic errors

For example, you can instantly determine that the example file reads uninitialized memory b
ing C++Test to test with Insure++ (ParaSoft’s C/C++ runtime error detection tool) then clickin
button.

Conclusion

The above error prevention and error detection techniques can dramatically improve embed
software quality and reduce the time and money spent on debugging. The tools that ParaSo
embedded developers are designed as generally as possible so that they can easily be app
many different types of embedded software projects. This means that you can leverage you
investment and expertise in these tools and techniques as you move to new projects and di
target technologies. These tools and techniques will also help you ensure that your code can
be maintained, modified, and ported to new types of devices. In short, these tools and techn
will not only help you improve your current embedded applications and development proces

Figure 8: Uninitialized Memory Errors Found by Insure++ and C++Test
16

and
n bud-

help
88-
also help you ensure that as new embedded devices become available, you have the tools
expertise needed to develop high quality applications for these technologies-- on time and o
get.

To learn more about how CodeWizard, C++Test, and other ParaSoft development tools can
your department prevent and detect errors, talk to a Software Quality Specialist today at 1-8
305-0041, or visit www.parasoft.com.

References

Humphrey, W.A Discipline for Software Engineering(Reading, MA: Addison-Wesley 1995).

Hunt, A. and Thomas, D.The Pragmatic Programmer(Reading, MA: Addison-Wesley 2000).

McConnell, S.Code Complete(Redmond, WA: Microsoft Press 1993).
17

	Introduction
	Enforcing Coding Standards
	Performing Unit Testing
	Conclusion
	References

